
Swizz: One-Liner Figures, LaTeX Tables, and Flexible Layouts
for Scientific Papers

Lars Quaedvlieg * 1 Andrea Miele * 1 Caglar Gulcehre 1

Abstract
Producing publication-quality visualizations and
tables for machine learning papers is often te-
dious, time-consuming, and prone to inconsisten-
cies. We introduce Swizz, a lightweight Python
library designed specifically for researchers to ef-
fortlessly generate elegant figures, LaTeX-ready
tables, and customizable figure layouts with mini-
mal code. Swizz enables one-line creation of con-
sistent, conference-ready visualizations, including
advanced plots and multilevel tables, and provides
intuitive, composable layouts to simplify complex
figure arrangements. Its automated styling and
built-in visual gallery facilitate rapid experimen-
tation, allowing researchers to focus more on re-
search and less on formatting. Swizz is publicly
available, easy to integrate into existing work-
flows, and is themed for major machine learning
publication venues. Swizz is open source (MIT)
and is available on GitHub and PyPI.

1. Introduction
With 45,758 papers submitted to the machine learning (ML)
conferences NeurIPS, ICML, ICLR, and CVPR in 2024
alone, thousands of researchers collectively spend count-
less hours creating plots, formatting tables, and arranging
complex figure layouts. This repeated manual work is te-
dious and distracts researchers from their main goal of ad-
vancing scientific knowledge. A unified, community-driven
repository would eliminate redundant work and significantly
reduce overhead.

We introduce Swizz, a lightweight Python library explic-
itly designed to become such a community-driven platform.
Swizz provides intuitive one-liner APIs for creating ele-
gant, publication-quality plots, tables, and flexible figure
layouts. Most importantly, Swizz is designed for easy
contributions to plot and table templates by the commu-

*Equal contribution 1EPFL, Switzerland. Correspondence to:
Lars Quaedvlieg <larsquaedvlieg@outlook.com>.

nity, facilitating the rapid growth of a large collection of
ready-to-use visualizations. Researchers can simply browse
the visual gallery, pick the desired plot or table style, and
instantly generate consistent, publication-ready outputs.

By minimizing the repetitive overhead of figure and table
creation, Swizz empowers researchers to focus their valu-
able time on experimentation and scientific discovery rather
than formatting. The library is fully open source (MIT), eas-
ily accessible via GitHub and PyPI, and we actively encour-
age contributions from the broader community1. Through
collective effort, Swizz can continue to evolve as the go-to
resource for visual presentation in ML publications.

1.1. Key Features

• One-line plotting API: Produces styled visualizations
from raw data in one line of code.

• Automatic LaTeX tables: Convert raw data into ready-
to-paste LaTeX tabular code.

• Subfigure layouts: Build complex figure grids with
simple layout utilities.

• Consistent styling: Built-in color palettes, hatch pat-
terns, and typography ensure consistent outputs be-
tween plots.

2. Related Works
Swizz builds directly on the well-known Mat-
plotlib (Hunter, 2007) and Seaborn (Waskom, 2021)
libraries, using their plotting APIs and styles while hiding
the boilerplate code. Matplotlib remains the standard for
fine-grained control in Python, and Seaborn adds high-level
interfaces for statistical graphics; Swizz complements
both by providing one-line wrappers and a unified styling
layer for academic publications.

Several other tools aim to simplify visualization and layout
in Python. Libraries like Plotly (Plotly Technologies, 2015)
and Bokeh (Bokeh Development Team, 2018) offer inter-
active, web-friendly plots, but require a different API and

1Join the development at https://github.com/
anonymous-ml-author/swizz-anonymous

1

https://github.com/anonymous-ml-author/swizz-anonymous
https://github.com/anonymous-ml-author/swizz-anonymous

Swizz: One-Liner Figures, LaTeX Tables, and Flexible Layouts for Scientific Papers

often more setup for publication-quality figures. High-level
interfaces such as Altair (VanderPlas et al., 2018) provide
concise Grammar of Graphics abstractions, but they do not
integrate directly with LaTeX table generation or multipanel
figure composition. For tabular output, Pandas’ (Wes McK-
inney, 2010) ‘DataFrame.to latex‘ and third-party packages
like Tabulate (Tabulate Team, 2022) automate basic table
conversion, yet lack built-in support for multilevel head-
ers, custom formatting, and automatic highlighting of best
entries – a gap that Swizz fills.

Matplotlib’s built-in grid tools (e.g. ‘GridSpec‘ and ‘sub-
plot mosaic‘) let you define arbitrary subplot arrangements,
but they remain fairly low-level: You must handcraft
each grid spec or mosaic pattern, manually hide or show
axis labels, and tweak legend placement and padding by
hand. Swizz builds on these foundations but exposes a
Flutter-inspired block layout model–‘PlotBlock‘, ‘Row/-
Col‘, ‘LegendBlock‘, ‘Label‘, etc.–so you can simply say
“2×3 grid with shared legend and bottom-row x-labels” (or
any other combination) and let the library handle axis vis-
ibility, legend collection, internal padding, and annotation
blocks automatically. Some higher-level frameworks (e.g.
HoloViews (Rudiger et al., 2020) or Plotly’s Dash) enable
dashboard-style layouts, but they target interactive environ-
ments rather than static, publication-ready panels.

We provide a table of differences between these libraries
in Appendix D. By combining one-liner plot wrappers, au-
tomated LaTeX table formatting, and composable layout
blocks, Swizz forms a library for researchers who need
both the programmatic simplicity and the polish required to
write high-quality papers.

3. Architecture and Modules
Swizz is organized into three core modules:

swizz.plot A collection of one-line plotting functions
for standard chart types (lines with error bands, his-
tograms, bar charts, scatter/UMAP/t-SNE, etc.). Each
function applies consistent, publication-ready styling
(colors, fonts, grids) automatically.

swizz.table Utilities to convert raw data (e.g.
pandas.DataFrame) into LaTeX tabular code.
Built-in support for multi-level headers, mean ± std
(or stderr) formatting, percentage display, and flexible
row/column grouping.

swizz.layout A Flutter-inspired block layout API for
composing multipanel figures. Core building blocks in-
clude PlotBlock, Row, Col, LegendBlock, and
Label. Blocks can be nested arbitrarily, and prede-
fined layouts (e.g. grid stack for an n × m grid

with shared legends and selective axis labels) are pro-
vided for common use cases.

Each module focuses on a single concern, but they interop-
erate seamlessly: plots produce Matplotlib axes that feed
into layout blocks, and tables emit LaTeX code ready for
direct insertion into the paper.

3.1. Styling and Themes

Swizz applies visual themes by combining Matplotlib’s
rcParams, style sheets, and Seaborn palettes. When call-
ing set style, it resets defaults, applies the selected
theme’s style (e.g., seaborn-v0 8-whitegrid), sets
the palette, and updates rcParams for fonts, grids, and
figure settings—ensuring consistent plots with minimal user
effort. It also means that users are able to load their own
style sheets if they prefer to use custom styles instead..

4. Usage Example
In the following, we demonstrate an example of a call to
each module in turn, showcasing how easy it is to generate
paper-ready tables and plots from your data. Furthermore,
in Appendix B, we showcase the difference in complexity
to produce plots with our package versus Matplotlib.

4.1. Tables

In Appendix A, Snippet 1 demonstrates how a single call
to swizz.table automatically produces all of the for-
matting, grouping, and highlighting logic. The resulting
LaTeX code can be pasted directly into your paper. In the
table gallery of the documentation, it also tells you which
packages and commands need to be used in order to compile
the table. Table 1 shows the output of the code in Snippet 1.

Table 1. Example table: expert-normalized returns across domains
and methods.

Domain Task Component MLP Modality

Ant

Dynamics change (↑) [4] 1.01± 0.07 1.00± 0.02 0.97± 0.04

IL (↑) [1] 0.98± 0.04 0.96± 0.05 0.98± 0.06

Off-RL (↑) [1] 0.98± 0.04 1.05± 0.04 1.02± 0.03

Sensor failure (↑) [11] 0.97± 0.04 1.01± 0.04 1.02± 0.05

HalfCheetah

Dynamics change (↑) [4] 1.00± 0.02 0.97± 0.05 0.98± 0.03

IL (↑) [1] 1.03± 0.03 1.07± 0.04 1.00± 0.04

Off-RL (↑) [1] 1.01± 0.06 1.01± 0.04 1.00± 0.09

Sensor failure (↑) [11] 0.97± 0.07 0.97± 0.05 1.02± 0.04

Hopper

Dynamics change (↑) [4] 1.03± 0.02 1.04± 0.07 1.04± 0.06

IL (↑) [1] 1.01± 0.05 0.97± 0.03 0.98± 0.04

Off-RL (↑) [1] 1.03± 0.06 0.98± 0.02 1.00± 0.07

Sensor failure (↑) [11] 0.99± 0.08 1.02± 0.03 1.03± 0.04

Walker2d

Dynamics change (↑) [4] 0.99± 0.03 1.00± 0.06 1.00± 0.04

IL (↑) [1] 0.98± 0.03 1.00± 0.05 1.02± 0.04

Off-RL (↑) [1] 0.99± 0.06 1.00± 0.04 1.02± 0.07

Sensor failure (↑) [11] 1.01± 0.06 1.00± 0.05 0.98± 0.05

2

Swizz: One-Liner Figures, LaTeX Tables, and Flexible Layouts for Scientific Papers

A complete gallery of all supported table styles
can be found in the Swizz documentation:
https://anonymous-ml-author.github.
io/swizz-anonymous/tables/index.html.

4.2. Figures

Swizz also offers multiple built-in plot “themes” (e.g.
latex, dark latex, nature, etc.). You can preview
all of them at https://anonymous-ml-author.
github.io/swizz-anonymous/plot_themes/
index.html.

In Appendix A, Snippet 2 also shows how just two calls
to swizz.plot create publication-ready charts with error
bands or percentile curves. In Figure 1 and Figure 2 we
display the rendered outputs.

0% 20% 40% 60% 80% 100%
Percentile of contestants below score

0%

20%

40%

60%

80%

100%

N
or

m
al

iz
ed

 sc
or

e

Top 70

Prize Threshold

Backbone
Performance

Synthetic Contest Performance

Figure 1. Percentile curve plot illustrating the distribution of values
across percentiles.

5000 10000 15000 20000 25000
Round Number

-6.5

-6.0

-5.5

-5.0

-4.5

-4.0

N
um

be
r o

f U
ni

qu
e

Sc
or

es

No Training
Forward KL
Reverse KL

Figure 2. Multiple standard-deviation lines showing uncertainty
bands around mean trajectories.

A full gallery of Swizz figure types is available at:
https://anonymous-ml-author.github.io/
swizz-anonymous/plots/index.html.

4.3. Figure Layouts

Swizz’s layout module lets you assemble complex,
publication-ready figures from simple building blocks. Core
blocks include PlotBlock, Row, Col, LegendBlock,
and Label.

Snippet 3 shows how to compose a nested layout with two
rows of shared legends and labeled sub-panels. The rendered
result appears in Figure 3.

Forward Reverse Baseline0

1

2

3

4

5

6

4.2

6.0

5.3

3.5

5.2

4.8

2.1

4.8

3.6
1000 2000 3000

Step

600

500

400

R
et

ur
n

1000 2000 3000
Step

600

500

400

R
et

ur
n

Accuracy Precision Recall Baseline Forward KL Reverse KL

Forward Reverse Baseline0

1

2

3

4

5

6

4.2

6.0

5.3

3.5

5.2

4.8

2.1

4.8

3.6
1000 2000 3000

Step

600

500

400

R
et

ur
n

1000 2000 3000
Step

600

500

400

R
et

ur
n

(a) Bar chart

(b) Line plot 1

(c) Line plot 2(a) Bar chart

(b) Line plot 1

(c) Line plot 2

Figure 3. Nested layout with two legend rows and three labeled
subplots, generated by the code in Listing 3.

Similarly, Snippet 4 demonstrates how to build a 2 × 3 grid
of bar plots with selective axis labels and custom widths
using the grid stack preset, and Figure 4 shows the
resulting arrangement.

Forward Reverse Baseline0

1

2

3

4

5

6

Va
lu

e_
0

4.2

6.0

5.3

3.5

5.2
4.8

2.1

4.8

3.6

Forward Reverse Baseline0

1

2

3

4

5

6

4.2

6.0

5.3

3.5

5.2
4.8

2.1

4.8

3.6

Forward Reverse Baseline0

1

2

3

4

5

6

4.2

6.0

5.3

3.5

5.2
4.8

2.1

4.8

3.6

Forward Reverse Baseline
Method_0

0

1

2

3

4

5

6

Va
lu

e_
1

4.2

6.0

5.3

3.5

5.2
4.8

2.1

4.8

3.6

Forward Reverse Baseline
Method_1

0

1

2

3

4

5

6

4.2

6.0

5.3

3.5

5.2
4.8

2.1

4.8

3.6

Forward Reverse Baseline
Method_2

0

1

2

3

4

5

6

4.2

6.0

5.3

3.5

5.2
4.8

2.1

4.8

3.6

Figure 4. Grid layout generated by grid stack as shown in List-
ing 4.

These examples illustrate how Swizz handles legends,
labels, spacing, and margins automatically. For more
layouts and detailed examples, see the full gallery at
https://anonymous-ml-author.github.io/
swizz-anonymous/layout/index.html.

3

https://anonymous-ml-author.github.io/swizz-anonymous/tables/index.html
https://anonymous-ml-author.github.io/swizz-anonymous/tables/index.html
https://anonymous-ml-author.github.io/swizz-anonymous/plot_themes/index.html
https://anonymous-ml-author.github.io/swizz-anonymous/plot_themes/index.html
https://anonymous-ml-author.github.io/swizz-anonymous/plot_themes/index.html
https://anonymous-ml-author.github.io/swizz-anonymous/plots/index.html
https://anonymous-ml-author.github.io/swizz-anonymous/plots/index.html
https://anonymous-ml-author.github.io/swizz-anonymous/layout/index.html
https://anonymous-ml-author.github.io/swizz-anonymous/layout/index.html

Swizz: One-Liner Figures, LaTeX Tables, and Flexible Layouts for Scientific Papers

5. Documentation and Community
Comprehensive documentation, live examples,
and API references are available at https:
//anonymous-ml-author.github.io/
swizz-anonymous/. Contributions, issue reports,
and pull requests are welcome through the GitHub reposi-
tory, with the guidelines outlined in CONTRIBUTING.md.

5.1. Contribution Workflow

Contributing new plots or tables to Swizz is designed to be
as simple and streamlined as possible. The workflow below
ensures that your addition is automatically integrated into
the documentation and usable with the standard API.

1. Create Your Module: Add a new Python file under
the appropriate directory:

• Plots: swizz/plots/yourfile.py
• Tables: swizz/tables/yourfile.py

2. Write the Plot or Table Function: Define your plot or
table generator. The function should be self-contained
and return a standard Matplotlib figure or LaTeX-
formatted string.

3. Register the Function: Use the @register plot
or @register table decorator to register your
function. This ensures your contribution is automati-
cally recognized by the library and added to the docu-
mentation gallery.

Example (for a plot):
@register_plot(

name="simple_bar_plot",
description="A simple bar plot with three bars"

" and value annotations.",
example_image="simple_bar_plot.png",
example_code="simple_bar_plot.py"

)
def simple_bar_plot():

...
return fig, ax

4. Add an Example Snippet: Create a Python example
script that calls your function and saves the output.
Place it under:

• docs/ static/snippets/plots/ or
.../tables/

5. Render the Output: Run the script to generate the
output (plot image or LaTeX table), and save it to:

• docs/ static/images/plots/ or
.../tables/

6. Automatic Documentation: You do not need to man-
ually modify the docs. The Jupyter Book automati-
cally detects all registered plots/tables and builds a live
gallery.

7. Submit a Pull Request: Fork the repository, push
your new branch (e.g., feature/new-bar-plot),
and open a pull request. Be sure to describe your
contribution clearly.

For more details and examples, refer to the CONTRIBUT-
ING.md file in the repository.

5.2. Limitations

Although Swizz simplifies the creation of publication-
ready figures and tables, there are a few limitations in
this first release. First, customization beyond the provided
themes and presets may require additional effort. Although
users receive the underlying Matplotlib figure object, which
enables post-hoc edits, deep modifications may necessitate
dropping into lower-level code. Second, interactive visu-
alizations (e.g., using Plotly for instance) are currently un-
supported, as Swizz focuses on static, publication-quality
outputs. Lastly, not all plot types are supported yet, but
we are actively expanding the library’s capabilities with
new templates and welcome community contributions to
accelerate this process, as explained in 5.1.

6. Conclusion
Swizz simplifies the process of creating publication-quality
figures, LaTeX tables, and multipanel layouts with minimal
code. By combining one-line plot wrappers, automated ta-
ble formatting, and a composable block-based layout API,
Swizz enables researchers to focus on insights rather than
styling. We invite the community to contribute new plot
types, table styles, and layout presets to continue evolv-
ing Swizz into the go-to toolkit for ML and data-science
publications.

References
Bokeh Development Team. Bokeh: Python library for in-

teractive visualization, 2018. URL https://bokeh.
pydata.org/en/latest/.

Hunter, J. D. Matplotlib: A 2d graphics environment. Com-
puting in Science & Engineering, 9(3):90–95, 2007. doi:
10.1109/MCSE.2007.55.

Plotly Technologies. Collaborative data science. Montreal,
QC, 2015. URL https://plot.ly.

Rudiger, P., Stevens, J.-L., Bednar, J. A., Nijholt, B.,
Andrew, B, C., Randelhoff, A., Mease, J., Tenner, V.,
maxalbert, Kaiser, M., ea42gh, Samuels, J., stonebig,
LB, F., Tolmie, A., Stephan, D., Lowe, S., Bamp-
ton, J., kbowen, et al. holoviz/holoviews: Version
1.13.3 (v1.13.3), 2020. URL https://doi.org/10.
5281/zenodo.3904606.

4

https://anonymous-ml-author.github.io/swizz-anonymous/
https://anonymous-ml-author.github.io/swizz-anonymous/
https://anonymous-ml-author.github.io/swizz-anonymous/
https://github.com/anonymous-ml-author/swizz-anonymous/blob/main/CONTRIBUTING.md
https://github.com/anonymous-ml-author/swizz-anonymous/blob/main/CONTRIBUTING.md
https://bokeh.pydata.org/en/latest/
https://bokeh.pydata.org/en/latest/
https://plot.ly
https://doi.org/10.5281/zenodo.3904606
https://doi.org/10.5281/zenodo.3904606

Swizz: One-Liner Figures, LaTeX Tables, and Flexible Layouts for Scientific Papers

Tabulate Team. tabulate — pypi.org. https://pypi.
org/project/tabulate/, 2022.

VanderPlas, J., Granger, B., Heer, J., Moritz, D., Wong-
suphasawat, K., Satyanarayan, A., Lees, E., Timofeev, I.,
Welsh, B., and Sievert, S. Altair: Interactive statistical
visualizations for python. Journal of Open Source Soft-
ware, 3(32):1057, 2018. doi: 10.21105/joss.01057. URL
https://doi.org/10.21105/joss.01057.

Waskom, M. L. seaborn: statistical data visualization. Jour-
nal of Open Source Software, 6(60):3021, 2021. doi:
10.21105/joss.03021. URL https://doi.org/10.
21105/joss.03021.

Wes McKinney. Data Structures for Statistical Computing in
Python. In Stéfan van der Walt and Jarrod Millman (eds.),
Proceedings of the 9th Python in Science Conference, pp.
56 – 61, 2010. doi: 10.25080/Majora-92bf1922-00a.

5

https://pypi.org/project/tabulate/
https://pypi.org/project/tabulate/
https://doi.org/10.21105/joss.01057
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021

Swizz: One-Liner Figures, LaTeX Tables, and Flexible Layouts for Scientific Papers

A. Snippets
A.1. Tables

import numpy as np
import pandas as pd
from swizz import table

Generating the data
np.random.seed(0)

domains = ["HalfCheetah", "Hopper", "Walker2d", "Ant"]
tasks = ["IL (↑) [1]", "Off-RL (↑) [1]", "Sensor failure (↑) [11]", "Dynamics change (↑) [4]"]
methods = ["MLP", "Modality", "Component"]

rows = []
for domain in domains:

for task in tasks:
for method in methods:

values = np.round(np.random.normal(loc=1.0, scale=0.05, size=5), 3).tolist()
rows.append({

"Domain": domain,
"Task": task,
"Method": method,
"score": values

})

df = pd.DataFrame(rows)

Making the LaTeX for the table
latex = table(

"grouped_multirow_latex",
df=df,
row1="Domain",
row2="Task",
col="Method",
value_column="score",
highlight="max",
stderr=False,
caption="Example table: expert-normalized returns across domains and methods.",
label="tab:tokenization_comparison"

)
print(latex)

Snippet 1. Generate a multi-row, multi-column LaTeX table in one call.

A.2. Figures

import numpy as np
import matplotlib.pyplot as plt

from swizz import plot, set_style

Choose a theme ("latex" is default)
set_style("latex")

Generate some dummy data
rounds = np.linspace(250, 2900, 30)

def fake_curve(seed, offset=0):
np.random.seed(seed)
base = np.linspace(-550 + offset, -400 + offset, len(rounds))
noise = np.random.normal(0, 8, size=len(rounds))
stderr = np.random.uniform(5, 20, size=len(rounds))
return base + noise, stderr

averaged_metrics = {
"forward-method": {

"round_num": rounds,
"unique_scores": fake_curve(0)[0],
"std_error": fake_curve(0)[1],

},
"reverse-method": {

"round_num": rounds,
"unique_scores": fake_curve(1, -40)[0],
"std_error": fake_curve(1)[1],

6

Swizz: One-Liner Figures, LaTeX Tables, and Flexible Layouts for Scientific Papers

},
"baseline": {

"round_num": rounds,
"unique_scores": fake_curve(2, -60)[0],
"std_error": fake_curve(2)[1],

},
}

Generate fake scores
np.random.seed(42)
scores = np.random.normal(200, 400, size=500)

fig, ax = plot("percentile_curve_plot",
scores=scores,
normalize_scores=True,
normalize_percentiles=True,
horizontal_markers=[

(0.9, "Prize Threshold"),
],
vertical_markers=[

(0.6, "Backbone\nPerformance"),
],
highlight_top_n=70,
highlight_label="Top 70",
highlight_label_color="darkgreen",
highlight_label_font_size=16,
highlight_color="#c8e6c9",
vertical_label_offset=0.03,
xlabel="Percentile of contestants below score",
ylabel="Normalized score",
title="Synthetic Contest Performance",
font_family="Times New Roman",
font_axis=14,
figsize=(8, 5),

)
plt.show()

fig, ax = plot(
"multiple_std_lines",
data_dict=averaged_metrics,
label_map={

"forward-method": "Forward KL",
"reverse-method": "Reverse KL",
"baseline": "No Training",

},
style_map={

"forward-method": "solid",
"reverse-method": "dashed",
"baseline": "dotted",

},
color_map={

"forward-method": "#CC79A7",
"reverse-method": "#0072B2",
"baseline": "#009E73",

},
xlabel="Round Number",
ylabel="Number of Unique Scores",
xlim=(250, 2900),
ylim=(-650, -355),
x_formatter=lambda x, _: f"{x * 10:.0f}",
y_formatter=lambda y, _: f"{y / 100:.1f}",
save="ablation"

)

plt.show()

Snippet 2. One-line calls to produce styled figures under the chosen theme.

A.3. Figure Layout

from swizz.layouts.blocks import LegendBlock, Label
from swizz.layouts import render_layout
nested_layout = Col([

Row([
LegendBlock(

labels=["Accuracy", "Precision", "Recall"],
ncol=3, fixed_width=0.35),

LegendBlock(

7

Swizz: One-Liner Figures, LaTeX Tables, and Flexible Layouts for Scientific Papers

labels=["Forward KL", "Reverse KL"],
ncol=2)

], fixed_height=0.08, spacing=0.15),
Row([

Col([
plot3,
Label("(a) Bar chart", align="center",

fixed_height=0.05),
]),
Col([

plot1,
Label("(b) Line plot 1", align="center",

fixed_height=0.05),
plot2,
Label("(c) Line plot 2", align="center",

fixed_height=0.05)
], spacing=0.07)

], spacing=0.1),
], spacing=0.02)

fig = render_layout(nested_layout, figsize=(10, 8))
plt.show()

Snippet 3. Compose a nested layout with shared legends and labeled sub-panels.

from swizz import layout
from swizz.layouts import render_layout, PlotBlock
import matplotlib.pyplot as plt

Define grid size
n_rows, n_cols = 2, 3

Defines the way to place plots within the grid and their arguments
def plot_fn(row_idx, col_idx):

xlabel = ylabel = None
fixed_width = None
if col_idx == 1:

fixed_width = 0.35
if row_idx == n_rows - 1:

xlabel = f"Method_{col_idx}"
if col_idx == 0:

ylabel = f"Value_{row_idx}"

return PlotBlock("general_bar_plot",
fixed_width=fixed_width,
kwargs={

"data_dict": data_dict,
"style_map": style_map,
"xlabel": xlabel,
"ylabel": ylabel,
"color_map": None if col_idx != 1 else other_color_map,
"legend_loc": None}

)

grid_layout = layout("grid_stack",
n_rows=2, n_cols=3,
plot_fn=plot_fn)

fig = render_layout(grid_layout,
figsize=(16, 8),
margins=(0.05, 0.1, 0.05, 0.05))

plt.show()

Snippet 4. Build a 2 × 3 grid of bar plots with selective axis labels and custom widths.

B. Matplotlib code versus Swizz
In this section, we compare the simplicity of Swizz with the equivalent Matplotlib code for a grouped bar plot.

B.1. Swizz (One-liner API)

import numpy as np
from matplotlib import pyplot as plt

8

Swizz: One-Liner Figures, LaTeX Tables, and Flexible Layouts for Scientific Papers

from swizz import plot

data_dict = {
"Forward": {"Accuracy": 4.2, "Precision": 3.5, "Recall": 2.1},
"Reverse": {"Accuracy": 6.0, "Precision": 5.2, "Recall": 4.8},
"Baseline": {"Accuracy": 5.3, "Precision": 4.8, "Recall": 3.6},

}

style_map = {
"Accuracy": '',
"Precision": r"\\",
"Recall": 'x'

}

plot("general_bar_plot", data_dict, style_map=style_map, save="bar")
plt.show()

Snippet 5. Bar plot with Swizz.

B.2. Matplotlib Equivalent with Matching Style

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import colors as mcolors
import matplotlib as mpl
import seaborn as sns

--- Apply Swizz's "latex" theme manually ---
mpl.rcParams.update(mpl.rcParamsDefault)
plt.style.use("seaborn-v0_8-whitegrid")
sns.set_palette("colorblind")
mpl.rcParams.update({

"font.family": "Times New Roman",
"font.size": 18,
"axes.labelsize": 18,
"axes.titlesize": 18,
"axes.labelpad": 6.0,
"axes.labelcolor": "black",
"axes.linewidth": 1.0,
"axes.grid": True,
"axes.grid.axis": "both",
"axes.spines.top": False,
"axes.spines.right": False,
"grid.linestyle": "--",
"grid.alpha": 0.3,
"grid.color": "gray",
"xtick.labelsize": 16,
"ytick.labelsize": 16,
"figure.dpi": 300,
"figure.figsize": (12, 7),
"figure.facecolor": "white",
"figure.autolayout": True,
"lines.linewidth": 2.5,
"lines.markersize": 6,
"legend.frameon": True,
"legend.framealpha": 0.9,
"legend.edgecolor": "grey",
"legend.fontsize": 16,
"legend.handlelength": 1.5,
"legend.loc": "upper right"

})

--- Plotting ---
data_dict = {

"Forward": {"Accuracy": 4.2, "Precision": 3.5, "Recall": 2.1},
"Reverse": {"Accuracy": 6.0, "Precision": 5.2, "Recall": 4.8},
"Baseline": {"Accuracy": 5.3, "Precision": 4.8, "Recall": 3.6},

}

fig, ax = plt.subplots(figsize=(12, 7))
categories = list(data_dict.keys())
indices = np.arange(len(categories))
metrics = list(data_dict[next(iter(data_dict))].keys())

bar_width = 0.25
style_map = {"Accuracy": '', "Precision": '\\', "Recall": 'x'}
color_map = {metric: None for metric in metrics}

9

Swizz: One-Liner Figures, LaTeX Tables, and Flexible Layouts for Scientific Papers

bar_positions_list = []
for i, metric in enumerate(metrics):

values = [data[metric] for data in data_dict.values()]
positions = indices + (i - len(metrics) / 2) * bar_width
bars = ax.bar(positions, values, bar_width, label=metric,

color=color_map[metric], hatch=style_map[metric], linewidth=1)
bar_positions_list.append(positions)
for rect in bars:

edge = mcolors.to_rgba(rect.get_facecolor(), alpha=1.0)
edge = mcolors.to_hex([min(1, c * 0.6) for c in edge[:3]])
rect.set_edgecolor(edge)
height = rect.get_height()
ax.text(rect.get_x() + rect.get_width() / 2, height + 0.1,

f'{height:.1f}', ha='center', va='bottom', color=edge,
fontweight='bold', fontsize=12)

ax.plot([rect.get_x() + rect.get_width() / 2]*2, [height, height + 0.1],
color=edge, lw=1.5)

centers = np.mean(np.array(bar_positions_list), axis=0)
ax.set_xticks(centers)
ax.set_xticklabels(categories)
ax.set_ylabel("Value")
ax.legend(loc="upper right", ncol=len(metrics))
plt.tight_layout()
plt.savefig("bar.png", dpi=300, bbox_inches="tight")
plt.savefig("bar.pdf", dpi=300, bbox_inches="tight")
plt.show()

Snippet 6. Bar plot with matplotlib from scratch.

B.3. Summary
Swizz condenses over 50 lines of Matplotlib styling and layout code into a single declarative call. While Matplotlib offers
full control, it requires manual setup for fonts, styles, and annotations. In contrast, Swizz provides named themes and
one-liner plot functions to generate consistent, publication-ready figures with minimal effort.

10

Swizz: One-Liner Figures, LaTeX Tables, and Flexible Layouts for Scientific Papers

C. Plot examples

Clas
s A

Clas
s B

Clas
s C

Predicted label

Class A

Class B

Class C

Tr
ue

 la
be

l

50 2 3

5 45 10

2 8 40 10

20

30

40

50

(a) Confusion matrix

0.0 0.2 0.4 0.6 0.8
Lone-wolf capture rate

64

128

256

512

1024

2048

0.95

0.99

0.995

0.784

0.880

0.937

0.891

0.880

0.874

0.830

0.880

0.723Discount factor
Batch size
Hidden size

(b) General horizontal bar plot

No FTz FTz0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
g

Va
lu

e

1.0

1.2

0.7

0.9

Comparison of Reward and Goal

Reward Goal

(c) General bar plot

10 20 50 100
Team Reward

6

9

12

R
ad

iu
s

0.93 0.92 0.92 0.75

0.86 0.88 0.90 0.90

0.86 0.86 0.75 0.78

0.70

0.75

0.80

0.85

0.90

0.95

Lo
ne

 W
ol

f R
at

e

(d) Heatmap

Figure 5. (a) Confusion matrix. (b) General horizontal bar plot. (c) General bar plot. (d) Heatmap.

11

Swizz: One-Liner Figures, LaTeX Tables, and Flexible Layouts for Scientific Papers

D. Comparison with existing librairies

Library Basic
one-liner

Fully-
annotated
one-liner

Grid/
facet

Styling
themes

LaTeX
figure
export

LaTeX
table

helper

Learning
curve

Swizz ✓ ✓ ✓ ✓ ✓ (auto) ✓ Low
Seaborn ✓ ˜ ✓ ✓ ✓* ✗ Low–Mod.
Plotly Express ✓ ˜ ✓ ✓ ✓* ✗ Low
Altair ✓ ˜ ✓ ✓ ✓* ✗ Moderate
HoloViews ✓ ˜ ✓ ✓ ✓* ✗ Steep

Table 2. Feature comparison of Swizz with popular high-level Python visualisation libraries. “Fully-annotated one-liner” means the same
statement can set titles, axis labels and arrange multi-subplots.

*exports static PDF/SVG/PNG; no automatic LATEX wrapper generated. A tilde (˜) indicates partial or limited support that typically
requires follow-up commands.

12

