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Abstract—In this report, we address the problem of esti-
mating chess player ratings and match outcome prediction
by leveraging network approaches based on their past games
and results. We propose a rank regression framework that
learns a mapping from input features to match outcomes while
also implicitly learning player ratings. We explore numerous
techniques such as hand-crafted features and GNNs to learn
embeddings and train the regression model. Furthermore, we
propose different regularization techniques to capture the sim-
ilarities in player rankings. Ultimately, our models accomplish
the winning results on the corresponding Kaggle challenge
outperforming the traditional methods. Our findings indicate
that utilizing advanced GNN-based approaches to this problem
does not provide a benefit over techniques relying on cleverly
hand-crafted features capturing the network properties.

I. INTRODUCTION

The Kaggle competition titled ”Chess Ratings - ELO
versus the Rest of the World” held in 2010 presented the
challenge of forecasting chess match results by leveraging
player ratings derived from their historical performance.
The organizers of the competition hypothesized that when
predicting the chess match results it is necessary to estimate
the current ability of each player (i.e., rating, skill, form,
etc.) and have a mechanism that can evaluate the expected
outcome of a chess game between two players [1]. Predicting
a player’s current ability and how it compares to other active
players has a wide range of applications and is a critical
concern in the chess community1. For example, ratings are
used to determine tournament seeds, which can often impact
how the event unfolds (it is normally in the interest of
tournament organizers to have the best players competing
towards the end of the tournament).

Because players develop a network of chess games
through their contests, we argue that players’ ratings may
be closely tied to the structural roles that their respective
nodes have within the graph of all games. As a result,
the objective of our research is to estimate the current
rating of the players utilizing network approaches based
on their prior games and results. Finally, we assess the
reliability of our estimations based on the predictive power
of future unknown outcomes; for instance, if the rankings
are correctly calculated, the higher-ranked player should
perform better in the near future.

1The importance of the problem is well illustrated in the fact that at the
time this was the most popular Kaggle competition in terms of participation.

II. RELATED WORK

The most common rating estimation method is the ELO
rating system [2]. The method’s fundamental idea is to
progressively update the players’ ratings after each event.
The rating is updated based on the difference between the
player’s expected and actual performance given his rating
and rating of his opponents. To predict the result of the game,
ELO uses a logistic curve over the difference in players’
assessed ratings.

The winning proposal at the aforementioned Kaggle com-
petition was the rating system ELO++ submitted by Yannis
Sismanis [3]. Similarly to ELO ratings, ELO++ employs
a single rating for each player and predicts the outcome
of a game using the sigmoid function over the difference
in ratings between the players. Moreover, ELO++ adds a
regularization technique that prevents overfitting with the
main idea that a player’s rating should be similar to the
rating of his opponents while accounting recency of games.

In difference to previous proposals, in this work, we
approach solving this problem in two phases. First, we
obtain the network features of each player, and then we
use these features to learn the players’ ratings such that
the prediction error of future unknown results is minimized.
As in the previous proposals, we put more weight on
the recent outcomes and apply the logistic curve over the
difference in ratings of the players to predict the probability
of the white player winning. Inspired by the outstanding
performance of ELO++, we consider regularizing the models
using communities detected within the network.

III. EXPLORATION

A. Dataset
The organizers provide the pre-divided data into training,

validation, and test set. However, we discover that the test set
does not contain the labels required for further evaluations
and that the validation dataset is simply a subset of the
training set; thus, we decide to disregard these two sets
entirely. Therefore for our task, we rely solely on the training
dataset that comprises 65,053 thousand games and their
outcomes played between approximately 7 thousand chess
players over the course of 100 months.

The data can be interpreted as a weighted directed multi-
graph where each player represents a node and edges repre-
sent games between two players. Edge goes from the white



to the black player, and each link contains two attributes: a
temporal marker (signifying the month in which the game
occurs) and a match score (1 if white wins, 0.5 if draw, 0 if
black wins2). The graph is multigraph because two players
can play more than once between each other, and in total,
there are 9154 parallel links.

Edge attribute analysis reveals a strong increase in the
number of matches over the last recorded months such that
roughly 30% of all matches occur between the 91st and
100th month. Looking at the game outcomes, we learn that
around 44% matches are finished with draws, while in 32%
of cases, the white player wins, and we only witness a
victory of the black player in approximately 23% of games.
Thus, we conclude that there is a certain bias (advantage)
towards white players winning, which is expected as they
make the first move and can dictate how the game develops.

B. Global Properties of the graph

We construct the graph gamesG using the edges from
the provided dataset as described above. The graph initially
contains 77 connected components. However, we discovered
the existence of the giant component containing over 97% of
nodes and 99.8% edges. Hence, we can discard the miniature
components as they do not bring valuable predictive infor-
mation and probably represent amateur players competing
against each other.

Furthermore, we conclude that the directionality of the
gamesG graph for many of the standard graph analyses may
not be meaningful, as the direction of the edge only helps us
keep track of who was white and who was a black player.
For instance, since we wish to track all the players that
a player competed with, we should perhaps disregard the
edge directions. Hereafter, for the following graph results,
unless stated otherwise, the analyses are performed on the
undirected version of our graph.

Hence, we construct a multilink graph with 7115 nodes
and 64,926 edges. The graph density is 0.0026, which means
that the graph is relatively sparse, matching the property
of real-world networks [4]. The average node degree repre-
senting the average number of games expected for players is
18.25, which appears to be slightly above the range of typical
average degrees found in real-world social networks (we can
consider the chess games network as a social network to
some extent) [5].

The average shortest path is 4.010. According to the
small-world property, the average shortest path of this net-
work should be approximately 3.054. However, this value is
not entirely reliable because we have a graph with numerous
parallel links (that do not contribute to additional graph
connectivity). Consequently, we attempt to correct the result
by disregarding the multi-links. In this scenario, we obtain

2In practice, the existing ranking systems interpret the match score as
the probability that the white player wins a chess match.

3.222, which is considerably closer to the actual value,
however, we cannot infer that the graph fully satisfies the
small-world property. This can be attributed to the pres-
ence of leagues where the similarly-rated players compete
frequently among themselves, fostering strong connections.
Yet, outside of these leagues, there are limited interactions,
as weaker players rarely participate in tournaments with
stronger players, and vice versa.

According to the average clustering coefficient, the like-
lihood of two neighbors of a node playing against each
other is roughly 0.179. On the other hand, for the global
clustering coefficient, we obtain 0.1258. Comparing this
result to the average clustering coefficient reveals a notable
decline, which can be interpreted as a result of the bracket
format of some chess competitions. For instance, if player
A defeats both players B and C, players B and C do not
face each other.

Figure 1a of the node degree distribution of gamesG
(in practice representing the distribution of the number of
games played by players) reveals a heavy-tailed distribution.
The existence of hubs is apparent as there are players
who participate in far more matches than others. Further
investigation confirms the node degree distribution follows
power law since the second moment is 1181.42 which is
significantly larger than the average node degree, and we
observe that its corresponding complementary cumulative
distribution function (CCDF) is forming a line on a log-
log scale. See Figure 1b. Hence, we conclude that gamesG
is a scale-free network. Additionally, we are able to find a fit
for our power-law distribution. See Figure 1c. The predicted
exponent is γ ≈ 1.70, which means that the average distance
is expected to be constant with respect to the number of
nodes, i.e., average distances are expected to be even less
than what the ultra-small property predicts [4]. However,
as we have shown, in practice, this is not the case because
gamesG is not even entirely under the small-world regime.
The reason for this mismatch can be found in a large number
of parallel links between the same pairs of nodes that do not
effectively contribute to higher graph connectivity.

C. Comparison with Network Models

Table I displays how the gamesG graph compares with
the best corresponding fits of some network models. All
three models provide a good fit for the number of edges
and average degree. Regarding the average shortest path and
average clustering coefficient the best match gives the WS
network model, while for the global clustering coefficient,
we cannot find a model that can approximate it properly. In
Figure 1a, we observe that the BA model matches the degree
distribution of our network rather closely (random networks
do not match our degree distribution since we show that it
does not follow a poison distribution but a power law).

As a result of the foregoing, we can say that our network
is not random. In other words, we can deduce that players



(a) Node degree distributions on log-scaled y-axis (b) CCDF of degree distribution on log-log scale (c) Power-law fit for degree distribution

Figure 1: Node degree distribution (left) of gamesG follows the power law since its corresponding CCDF is a line on the log-log scale
(middle) and we are able to find parameters of the power law distribution that form a good fit (right).

are not typically matched up at random, but rather that there
is a more organized mechanism in place that selects who
should play versus whom. That system might be set up
so that higher-rated players generally play versus higher-
rated players (and vice versa). Furthermore, due to the
elimination aspect of many chess competitions, players who
win consistently may be expected to play more matches than
players who lose more. See here for more details about the
format of the chess tournaments.

Furthermore, based on all our observations, we may
conclude that Barabási-Albert is also not a very suitable fit
for our network. One of the key assumptions for BA models
is preferential attachment, which states that the likelihood of
a new node connecting to node i is directly proportional to
i’s node degree. Effectively, this means that the players who
have played the most games will play even more matches in
the future compared to the rest of the competitors. However,
as we can see, this is not always the case in practice.
Although players with higher rankings are anticipated to
play more matches than those with lower ones, there is
undoubtedly more to it. For instance, rankings vary over
time, and older players may lose their positions to newer
ones, causing them to play fewer official matches or possibly
retire completely.

Model N |E| k̄ d̄ C̄ CG

ER (p = 0.003) 7115 64914 18.25 3.37 0.003 0.003

WS (β = 0.37) 7115 64035 18 3.62 0.176 0.171

BA (q = 9) 7115 63954 17.98 3.06 0.013 0.011

gamesG (ours) 7115 64926 18.25 4.01 0.179 0.126

Table I: Comparison of gamesG with Erdos-Rényi (ER), Watts-
Strogatz (WS), and Barabási-Albert (BA) models. N - number
of nodes; |E| - number of edges; k̄ - average node degree; d̄ -
average shortest path; C̄ - average clustering coefficient; CG -
global clustering coefficient

D. Node properties
We examine the distinct features of the individual nodes

in order to determine which of them might be reliable
indicators of players’ ratings and match winners.

In order to observe the predictive power of each selected
feature, we look at the difference in feature values between

the white and black players and the distributions of these
differences for edge pairs of different game outcomes. For
instance, looking at the games over the last recorded 4
months, we plot the distribution of the difference in the
selected features between white and black players when
white wins and when black wins. If this feature is expected
to be higher for the winning player, we should observe the
distribution shift when white wins towards the right, and
towards the left when black wins. See Figure 2. In addition,
we perform the t-test in order to ensure that means of the
two aforementioned distributions are significantly distinct.

Therefore, we find the following features computed on
undirected version of the graph to be favorable:

• Closeness centrality: It can illustrate the structural role
of a node in the graph which could reveal a lot about
the player’s rank. For example, hubs, whom everyone
wants to play against, are most likely the highest-rated
players. The shift in Figure 2a shows that having a
higher closeness centrality than your opponent means
a higher likelihood of winning.

• PageRank: A well-known algorithm for assessing the
importance of nodes in a network [6]. It could be an
important indicator of a player’s quality because if a
player’s neighbors are important and play many games,
that player could also be rated higher. See Figure 2b. In
addition, we observe a stronger shift if more importance
is given to the more recent edges using Equation (1).

• Node degree: We regard that playing more recent
games than your opponent is correlated with having
a higher chance to win matches.

• Eigenvector centrality: High when a node has well-
connected neighbors; we observe that a player who
plays with plenty of well-connected nodes is going to
have a higher likelihood to win matches.

• Betweenness centrality: The nodes with the highest
betweenness centrality represent players that are in
between leagues (e.g., recently earned promotion, hence
they are in good form).

In Figure 2c, we display an example of a feature that
does not seem to correlate with match-winning likelihoods
and player ratings. Finally, we analyze how well we can

https://www.chessable.com/blog/how-chess-tournaments-work/


(a) The distributions of differences for
closeness centrality

(b) The distributions of differences for
PageRank

(c) The distributions of differences for
the clustering coefficient

(d) The distributions of differences in
the total number of wins

Figure 2: The distributions of differences between white and black players when white wins (label 1) and when black wins (label -1)
computed for the matches happening over the last recorded 4 months.

predict the winner of the match if one player has more
wins. Since we look at the match outcomes of the last 4
recorded months, we discard edges representing the games
from this period when computing this property to avoid data
leakage. Surprisingly, looking at the wins in the past is not a
very reliable predictor of future match outcomes as the shift
seems to be much weaker compared to some other examined
properties. See Figure 2d. Only, according to Equation (1),
putting more weight on the more recent match outcomes
gives us a more significant correlation between this property
and match outcomes. Thus, when training models to predict
match results, we should prioritize recent matches as they
appear to be more revealing of future game outcomes.

E. Community structure of the graph

We are convinced that our graph contains an underlying
community structure such that communities form leagues
where similarly rated players play together. Hence, we be-
lieve that if we can correctly predict these leagues, we could
use them for the regularization of our models [3]. Therefore,
it is desirable to have multiple smaller communities in order
to facilitate regularization over a relatively small number of
nodes. This reasoning is based on the understanding that
it is unrealistic to demand that thousands of nodes possess
similar rankings. To predict such communities we use again
the undirected version of the gamesG graph (all games
should be treated equally) and two following methods.

1) Louvain Communities: The premise is that a group
of people who often play against each other are of similar
rankings and establish a league. Since the players’ rating
is a fluid notion and players can advance between ratings
and leagues, we employ Louvain Communities community
detection algorithm [7] using temporally weighted edges to
form communities, hoping that we can obtain communities
where players have many recent matches between each other.
Also, we experiment with building Louvain communities
using different resolution parameters (higher resolution in-
creases preference for smaller communities). Selecting the
resolution of 2.5 gives 51 communities and graph modularity
0.56, which is a moderately strong value and shows that
gamesG is indeed community-structured.

Interestingly, global clustering coefficients within com-
munities are now close to or even larger than average

clustering coefficients, which is not the case when looking
at global graph features. This could be due to the Swiss
chess tournament structure, in which everyone plays against
everyone, which is the most popular tournament format
when competitors are of comparable quality.

2) Spectral clustering: We also perform spectral cluster-
ing with the combinatorial or normalized Laplacian features
and the K-means algorithm. However, the experimentation
indicates that using combinatorial Laplacian does not give
meaningful clusters (always predicts one giant cluster con-
taining the majority of nodes). Hence, we use normalized
Laplacian and select the number of clusters such that we
obtain smaller communities while maximizing graph modu-
larity. Subsequently, we choose 60 as the number of clusters
and obtain the modularity of 0.362. As a result, for most
of the predicted clusters, we seem to get high clustering
coefficients, and most of the games played within those
communities seem to be played in the later months, which
are desirable properties. Moreover, spectral clustering has
grouped some nodes that did not have any matches between
each other, which is intriguing as those players may be
lower-ranked ones that in general do not have many games
and can be put in the same low-tier cluster.

IV. EXPLOITATION

In this section, we formalize our approach to conducting
chess rating estimation through the chess match forecasting
challenge. We describe the different approaches we have
explored in an attempt to solve the problem. Initially,
in Section IV-A, we discuss the framework employed in
this project. Then, in Section IV-B, we utilize multiple
hand-crafted features that were discussed in Section III. In
Section IV-C, we expand the model by using the learned
unsupervised node embeddings [8]. Finally, in Section IV-D,
we discuss an end-to-end GNN algorithm to learn features,
make predictions, and estimate player ratings.

A. Rank Regression

We present a rank regression framework that we have
developed to attempt to predict player rankings and match
outcomes based on hand-crafted or learned features and
regularization techniques. Formally, the goal of the frame-
work is to learn a mapping from the input features to the
probability that the white player wins, with the added value



of learning player ratings implicitly. We approach this as a
supervised learning problem, where we are given a graph of
historical game outcomes.

In this graph, the limited number of games played by each
player, averaging around 18 (average node degree) games,
poses a risk of overfitting. Moreover, players’ form and
abilities, as well as their ratings, fluctuate and evolve over
time. To address this, recent outcomes are given a higher
weight due to their increased relevance as it is done when
computing ELO++ [3].

tijnorm(γ) =

(
1 + tij − tmin

1 + tmax − tmin

)γ

. (1)

In Equation (1), a normalized form of time-weighting is
implemented, where t is in months (tmax and tmin- max and
min months considered). Furthermore, the hyperparameter
γ ∈ [1,∞) controls the strength of recent matches. When
γ is 1, the scaling is linear, while for higher values the
relevance of older results degrades exponentially with time.

Rank regression model: We develop the following pre-
dictive model for the match outcomes:

σ̂(µi, µj) = sigmoid (W (µi − µj) + b) .

Here, sigmoid(·) aims to predict the probability of white
winning between player i (white) and j (black), given their
respective feature vectors µi, µj ∈ Rm×1. These are either
hand-crafted or learned feature vectors of dimensionality m.
Furthermore, W ∈ R1×m and b ∈ R are learnable weights
and a bias. Consequently, Wµi and Wµj are scalars that
can be interpreted as learned ratings of the players, similar
to ELO ratings, since the larger the predicted value Wµ is,
the larger probability for this player to win a chess match.
In addition, the bias b can be seen as an intrinsic difference
between wins starting with black or white pieces. We let
ri = Wµi be the ranking of player i.

Neighborhood and community regularization: The
ranking of a player is expected to exhibit similarities with
the rankings of other players within their neighborhood or
community. This insight serves as a basis for regularization
in models as in ELO++ [3]. Three potential approaches are
explored in this regard:

1) Neighborhoods: For each player i with the neighbor-
hood Ni, the neighborhood ranking is determined as
a weighted average, considering the rankings of the
opponents j in Ni:

ni =

∑
Ni

tijnorm(2)rj∑
Ni

tijnorm(2)
.

2) Densely connected communities: Since players may
occasionally face opponents of different ranks, densely
connected communities of players are identified. By
weighting with the normalized recency, these com-
munities are expected to consist of players who have

recently played numerous matches together. The Lou-
vain community detection algorithm is employed to
find communities that maximize modularity. Accord-
ing to the conclusions from exploration, we select the
resolution of 2.5 and use edges weighted with tijnorm(2)
to detect communities. For each community C, the
average rating is computed as a simple average rating
of the nodes within the community:

ni =
1

|C|
∑
i∈C

ri .

3) Spectral clustering: A similar approach to community
detection is applied using spectral clustering. This
technique aims to identify communities based on the
underlying spectral properties of the graph. Following,
the findings during the exploration phase, we use
symmetric normalized Laplacian to compute node
features and 60 as the number of clusters. Again, the
average rating of a cluster (community) is evaluated
as a simple average of its node rating.

Final loss function design: To train the models effec-
tively, a suitable loss function is essential. The following loss
function is cleverly designed, incorporating the predictions
and regularization terms:

L =
∑
i,j

tijnorm(γ) ·BCE(σ̂ij , σij)+ λ ·
∑
i

(ri − ni)
2
. (2)

This approach is adapted from [3] to use binary cross-
entropy instead of mean-squared-error, and to utilize differ-
ent community detection approaches for normalization.

Here, λ represents the regularization parameter. The first
term captures the binary cross-entropy error between the
predicted outcome probability σ̂ij and true outcome σij

weighted by recency, for each game of players i and j.
The second term regulates the player rankings by penalizing
the difference between the ranking of a player ri and
their average neighborhood or community ranking ni. By
optimizing this loss function, the models aim to strike a
balance between accurate predictions of match outcomes
and capturing the similarity of player rankings within their
respective neighborhoods or communities.

To optimize the rank regression model, we employ
gradient-based optimization methods.

Model evaluation: We employ the RMSE (root mean
square error) variation used in the Kaggle competition called
Player/Month-aggregated RMSE (PM-RMSE) to evaluate
the precision of our models and their predictive ability to
estimate ratings and, subsequently, future results. We utilize
this error to rank and compare our findings to the outcomes
of the actual competition. The loss is evaluated as follows:

PM −RMSE =

√
1

|S|
∑
i

(ρ̂ti − ρti)
2 . (3)



where ρti is the true aggregated score (probability of win-
ning) for a month t and player i, and ρti is our prediction of
the respective value.

Additionally, we assess the models’ accuracy in predicting
chess match results. Although we primarily train our models
to predict the probability of the white player winning, we
can under certain assumptions perform the game outcome
prediction. Hence, we presume that if the predicted prob-
ability for the white player to win is below 33.33%, the
black player wins. On the other hand, if the model predicts
probability above 66.66%, we predict that the white player
wins, otherwise, we infer a draw. This way all possible
outcomes receive an equally-sized interval to be selected.

B. Hand-Crafted Features

This section discusses a baseline model for constructing
a feature vector µi for a player i. In order to anticipate
player ranking and match results with a small amount of
training data, it is crucial to focus on a limited set of
variables that provide relevant information. This section
mentions the features that are primarily considered favorable
for predicting match outcomes, as discussed in detail in
Section III-D. We view this algorithm as a baseline for more
complex algorithms introduced further down the paper.

Selected features:
• Number of games weighted by tijnorm(2): This feature

assigns greater importance to recent games by weight-
ing the number of games played by each player with
the time metric defined previously.

• PageRank weighted by tijnorm(2): Similar to the previous
feature, it is calculated on weighted edges with the
square of time passed since the game.

• Closeness: Closeness is a measure of centrality in a
network capturing the proximity of a player to others.

• Eigenvector centrality weighted by tijnorm(2): high if a
node is playing with nodes with lots of recent matches.

• Betweenness: Betweenness centrality assesses the ex-
tent to which a player lies on the shortest paths between
other players.

Because we want to account for all games played by each
participant, all features are computed on the undirected form
of the gamesG network built from the links of the training
set entries.

C. Learned unsupervised node embeddings

In an attempt to improve on the existing hand-crafted
features, we resort to using learning node representations
that are particularly envisioned to have strong discriminative
power for the given tasks. We employ the well-known
Node2Vec [8] and Laplacian eigenmaps [9] embeddings to
extract node features µi for each player i.

Node2Vec: Node2Vec is a popular graph embedding tech-
nique that captures the structural information of a network by
mapping nodes to low-dimensional vectors. This approach

enables the models to learn the expressive characteristics of
players based on their interactions and connections within
the game network. The Node2Vec algorithm incorporates a
random walk strategy to explore the network and capture the
neighborhood of each node. By balancing the exploration
of neighboring nodes and the exploitation of already vis-
ited nodes, Node2Vec can effectively capture the network’s
structural characteristics.

We have seen strong indications in previous works and our
explorations that players within the same communities and
neighborhoods should have similar ratings. Thus, we set p =
1 and q = 0.1. This way we capture homophily, i.e., nodes
from the same communities have comparable embeddings
and thus have comparable ratings. Moreover, to emphasize
the higher relevance of the connections representing more
recent games, when computing Node2Vec we use tijnorm(2)
as edge weights.

Laplacian eigenmaps: We also attempt to apply Lapla-
cian eigenmaps where node embeddings are determined by
the first D non-trivial eigenvectors of graph Laplacian. Since
exploration showed us that clustering using combinatorial
Laplacian does not give any meaningful results, we use
symmetric normalized Laplacian on unweighted gamesG to
obtain the node features.

Again, as was the case with hand-crafted features, we use
the undirected version of our graph that is built with the
edges of the training set.

D. End-To-End Learning with Graph Neural Networks

Finally, we present a graph neural network (GNN) ap-
proach to learning the match scores and player rankings
end-to-end. Some potential benefits of GNNs over Node2Vec
include the ability to capture more complex graph structures,
end-to-end learning, and the incorporation of initial node and
edge feature information.

Given a graph G(V,E,X, Y ) ∈ G, where G is a graph
in the set of all graphs G with vertex set V and edge set
E, and corresponding vertex and edge feature matrices X
and Y , let us denote a convolution layer of a GNN as a
function X ′ = fθ(V,E,X, Y ), parameterized with learn-
able weights θ. The convolution updates the current node
embeddings X into X ′. This update rule is the backbone of
many popular convolution layers, such as Graph Convolution
Networks [10] (GCN) and Graph Attention Networks [11]
(GAT). We experiment with these two types of layers since
GATs are considered good for learning node-level features
and GNCs are a good baseline method.

Furthermore, since we have a multi-graph with quite a
high connectivity, some over-smoothing is expected for a
deep GNN. We attempt to address this by using Differential
Group Normalization [12] (DGN), which learns to create
groups and normalizes nodes within the same group inde-
pendently to increase their smoothness and separate node



Figure 3: An example of the training procedure of the end-to-end GNN architecture with an example graph and initial node embeddings.
The green region, with the green vertices and edges, represents the subgraph that is sampled by the mini-batch sampler during training.
For each edge in the sampled subgraph, the node embeddings are updated and extracted with the GNN. The final embeddings are then
put through the regression head to compute the prediction and learn the player rankings.

distributions among different groups to significantly alleviate
the over-smoothing issue.

As node features, we ultimately decided to use only the
”closeness” as an initial embedding for the nodes since it
has been shown to be well correlated with the likelihood of
winning a match. Moreover, the GNN also utilizes the edge
feature tijnorm(2), which is a measure of the recency of the
matches. These features are selected by initially using ones
and random embeddings, and systematically checking other
hand-crafted features.

We use the GeLU [13] activation function, which is
said to be particularly well-suited for GNNs. By stacking
convolutional layers, DGN layers, and activations, we con-
struct a GNN for extracting node embeddings. These node
embeddings are then used as input features to the rank
regression model.

We train the GNN with the rank regression head end-to-
end in batches, by sampling a subgraph of nodes and edges
from the graph on the depth of the network. It iterates over
a set of edges in mini-batches, yielding a subgraph induced
by the edge mini-batch. This technique was utilized in [14].
The full setup is depicted in Figure 3.

V. EXPERIMENTS

In this section, we discuss the experiments that we have
performed. First, we describe the setup of the experiments,
after which we present the results and their interpretations.

A. Experimental Setup

Validation and Test sets: As we are only given labels
for the training set and the validation set is only a subset
of the first, we must split our dataset to properly evaluate
our models. Following the discussions during the original
Kaggle competition [1] that suggest that taking the last
couple of months for validating results should give a good
estimate of the performance on the competition’s test set, we
use matches from the 97th and 98th months as the validation
set and last two months (99th and 100th) for the test set.

Optimization: We use AdamW [15] optimizer with de-
fault PyTorch [16] settings for the training of all our models.

Hyperparameter validation: Choose the hyperparame-
ters γ and λ and select one of 3 community structures (from
IV-A) to minimize PM-RMSE on the validation set.

Training with the Hand-crafted features: As described
in the respective section, we train the model with the 5 hand-
crafted features. Since all considered features have only
positive values we use the min-max scaler for normalization.

Training with learned unsupervised node embed-
dings: We test performance with various emebddings sizes:
{8, 16, 32, 64}.

Training the GNN: Initially, we train the method on a
model with two hidden layers of size 64 and 32 respectively
using GCN layers and GAT layers. For the GAT layers, 8
and 4 attention heads are utilized consecutively. Then, we
test with different parameters for the best-performing model
and observe whether the addition of Differential Group
Normalization has an impact on the performance of deeper
models. The number of groups was selected using the best
validation set performance.

B. Results

In Table II we show the performances of 4 presented
approaches. Based on the scores we obtained for PM-RMSE,
all our models would rank as top 15 on the leaderboard
provided in [1]. Moreover, the models using the Hand-
crafted features and GNN would rank first and second
respectively. However, it is critical to bear in mind that
these results are based on an entirely different and slightly
smaller dataset (albeit the test set is carefully chosen to
ensure that the results are as reliable as possible), so our
claims should be approached with a dose of skepticism. On

Model PM-RMSE Accuracy [%]
Hand-crafted 0.67327 47.38
Node2Vec 0.69982 46.61
Laplacian eigenmaps 0.70013 46.75
GNN 0.68230 48.35

Table II: Comparison of the models’ performances on the test set.
For more details about evaluation metrics refer to Section IV-A.

the other hand, despite the GNN being the best-performing
model, the prediction accuracies for match outcomes are
not particularly impressive. However, having that the model
performances are significantly better than random guessing,
the difficulty of the problem, and the unavoidable noise that
comes with predicting future outcomes in any sport, and
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Figure 4: Analyses of the results and ratings predicted by the Rank Regression based on Hand-crafted features

also that our models are not designed to explicitly predict
match outcomes (only the probability of white winning), and
that we do not tune the hyperparameters of our models to
maximize accuracy, we claim that results can be considered
satisfying. Surprisingly, we get the worst results for models
using learned unsupervised node embeddings. Additional
analyses show that these models are strongly biased toward
predicting the draw. This could be an inherited consequence
of the design of the embedding prediction algorithms. They
often produce very similar embeddings between neighbors,
hence, the estimated ratings must also be similar; thus, a
draw is usually predicted.

Experiments on the validation data show that PM-RMSE
is maximized when γ = 2 for all models, confirming the
significance of placing more relevance on the recent games.

Moreover, we find that we should regularize the Hand-
crafted features model using the Louvain Communities with
λ = 0.1. For both Node2Vec and Laplacian eigenmaps-
based models the performance is maximized when using
embedding dimensions of 16. We regularize Node2Vec’s
model with nodes’ neighborhoods and λ = 0.75, while the
model using Laplacian eigenmaps executes the best when
regularized by spectral clusters and λ = 0.1.

For the GNN, we found that the GCN model did not
yield meaningful results. The best performance was achieved
using a 6-layer GAT model with 64-dimensional node em-
beddings. This model utilized 8 attention heads in each
layer, respectively. We also tried incorporating Differential
Group Normalization, which resulted in lower training loss
but unstable validation loss. Moreover, neighborhood reg-
ularization did not improve the model’s performance and
incurred significant computational overhead due to changing
features at each step. We believe that the GNN embeddings
already capture similar neighborhood structures, rendering
regularization less important.

C. Player’s ratings by Rank Regression

We define a novel ranking system that uses Hand-crafted
features-based model (the best-performing model on PM-
RMSE loss). Figure 4a shows the resulting learnt feature
weights W and bias b. We observe that closeness has the
highest coefficient and is the by far the most important
feature while PageRank surprisingly is not as useful as

we expected. Furthermore, whereas exploratory analyses
suggest that higher betweenness centrality is associated with
a higher likelihood of winning, the model learns the exact
opposite (this misinterpretation occurs most likely as the
effect of the white player’s advantage is stronger than the
effect of betweenness ”disadvantage,” which reverses the
observed distribution shifts from Section III). Finally, the
model learns b ≈ 0.2 which confirms that there is an intrinsic
advantage to starting as a white player.

Thus, we compute the rating for the player i using the
learnt feature weights and selected hand-crafted features:
ri = Wµi. Figure 4b displays the distribution of the
predicted ratings which is notably alike to the ELO rating
distribution from [3] having a long tail for ultra-successful
players that are by a strong margin better than the rest. The
predicted ratings are in the range [0, 2.5]. Thus, we conclude
that according to the learned value for b, the advantage that
the white player has is not negligible, especially in the duels
between mid and low-rated players.

Finally, Figure 4c presents the distribution of average
ratings across predicted Louvain communities for the Hand-
crafted features-based model. As anticipated, we get highly
diverse ratings for different communities, most notably one
with distinctly dominant players on the far left (the top-tier
community of the strongest players).

VI. CONCLUSIONS

We present a novel supervised learning methodology for
accurately forecasting chess game scores and player ratings.
Our approach leverages network-based techniques and their
inherent characteristics to construct more effective models
tailored to this specific task. The natural correspondence
between the problem and the graph formulation enhances
our approach, enabling it to outperform traditional methods.
We argue that a comprehensive exploration of network-based
techniques for learning rating systems can pave the way for
innovative encodings. Specifically, our findings suggest that
cleverly hand-crafted features based on network properties
outperform even advanced GNN-based learning algorithms
while at the same time helping us advance the understanding
and develop more sophisticated frameworks for modeling the
entity qualities.
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