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Abstract

Large Language Models (LLMs) have the po-
tential to revolutionize education by increas-
ing the accessibility of personalized and on-
demand learning assistance. However, in the
fields of Science, Technology, Engineering,
and Mathematics (STEM), which often require
complex reasoning, general-purpose LLMs typ-
ically underperform. This work aims to develop
an AI tutor targeted at STEM education, specif-
ically for multiple-choice question answering
related to EPFL courses. Using a small general-
purpose LLM as a base, we fine-tune a model
with enhanced capabilities for complex reason-
ing tasks related to STEM education. Addition-
ally, we augment our model using knowledge
retrieval to improve performance and demon-
strate that quantization can viably improve the
accessibility of our model in lower-resource
settings while maintaining reasonable perfor-
mance. Our DPO-aligned model outperforms
the base version for STEM question answer-
ing, bringing us one step closer to a scalable
solution for personalized learning assistance in
STEM education.

1 Introduction

The remarkable capabilities of large language mod-
els (LLMs) to understand and interact with humans
through natural language have inevitably led to
their widespread adoption across various domains.
A particularly impactful application is in the field of
education. With limited teaching resources being
a common issue globally, an AI tutor enabling in-
dependent student interaction and providing direct
answers could be invaluable. This would not only
reduce educators’ workload but also improve the ac-
cessibility of personalized assistance and promote
educational equality worldwide (Kılınç, 2023).

While LLMs have demonstrated strong capaci-
ties for commonsense reasoning and a wide array
of question-answering tasks (Naveed et al., 2024),
they often fall short in more complex reasoning

tasks (Bian et al., 2024). This limitation is partic-
ularly problematic in STEM (science, technology,
engineering, and mathematics) education, where
answering questions often requires understanding
theorems and complex reasoning. Therefore, us-
ing most existing LLMs directly out of the box
might not provide a robust AI tutor for many STEM
courses, especially at higher education levels.

In this work, we develop an AI tutor capable
of answering multiple-choice questions related to
EPFL courses in the fields of mathematics, physics,
computer science, and electrical engineering. We
leverage various datasets to initially tune an ex-
isting LLM for better performance on challeng-
ing STEM questions, and subsequently adapt this
model to generate answers for multiple-choice
questions. Additionally, we experiment with aug-
menting the model with knowledge retrieval to
enhance question-answering accuracy, and with
model quantization to drastically reduce memory
and compute requirements, enabling deployment
in more resource-constrained environments.

Our fine-tuned 3.8B-parameter model is able to
achieve a higher overall performance than its base
model on multiple complex reasoning datasets. We
include a qualitative analysis of our method on
different domains and show that using Direct Pref-
erence Optimization (Rafailov et al., 2024b) can
lead to hindering of in-context learning capabilities,
which retrieval augmented generation is highly de-
pendent on. We finally propose ways of avoiding
this issue.

2 Related Work

Alignment to Human Preferences. LLMs ex-
cel in generating human-like text, yet aligning
them to specific objectives such as safety or hu-
man preferences necessitates tailored approaches.
Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022) represents a funda-
mental method, refining models based on human-



rated preference datasets. Building on this, Direct
Preference Optimization (DPO) (Rafailov et al.,
2024b) streamlines the process by directly optimiz-
ing for human preferences, offering a more stable
and efficient alternative to RLHF. Our work seeks
to apply these methodologies in an educational
setting, where the accuracy, relevance, and com-
pleteness of reasoning are critical so that LLMs can
become a valuable learning tool.

Task-Specific Adaptation. While LLMs are in-
herently task-agnostic, adapting them for specific
tasks is essential. Model finetuning, which updates
model weights via supervised training tailored to a
specific task, often requires extensive datasets and
can lead to poor generalization and catastrophic for-
getting (McCoy et al., 2019; Luo et al., 2024). As
an alternative, few-shot in-context learning lever-
ages a few illustrative examples added directly to
the prompt without updating model weights, signif-
icantly reducing data and training needs (Radford
et al., 2019). Moreover, recent studies show that
zero-shot prompting, where tasks are described
without example inputs, can still yield robust task-
specific performance (Kojima et al., 2022).

Parameter Efficient Fine-Tuning. Given the
considerable size of many pre-trained language
models, fully finetuning all parameters is resource-
intensive and often impractical. Numerous strate-
gies have been developed for parameter-efficient
finetuning. One notable method is Low-Rank
Adaptation (LoRA) (Hu et al., 2021), which freezes
the original model weights and introduces low-
rank trainable matrices at specific layers. This
approach achieves results comparable to full fine-
tuning with significantly fewer trainable parameters
and reduced memory requirements. Unlike other
methods such as those proposed by Houlsby et al.
(2019), LoRA does not increase latency during in-
ference.

Our project eventually explores lightweight
adaptation methods, such as in-context learning
and LoRA, within educational applications, aim-
ing to enhance LLM responsiveness without the
typical overhead associated with traditional fine-
tuning. This approach makes adjusting LLMs more
accessible and reduces the need for extensive com-
putational resources.

Retrieval Augmented Generation (RAG).
Lewis et al. (2021) introduced the RAG approach
to enhance LLMs by dynamically integrating

context from a knowledge base directly into each
prompt. This is particularly vital in educational
settings, where the accuracy of information—such
as theorems, formulas, or lecture notes—is critical.
RAG allows LLMs to provide precise responses
relevant to specific courses reducing the need for
task-specific adaptation. Notably, RAG has been
successfully applied to improve mathematical
problem-solving in middle-school education (Lev-
onian et al., 2023) and to enhance medical training
in low-income countries (Al Ghadban et al., 2023).
Inspired by these applications, our project extends
RAG to university-level STEM courses, aiming
to boost accuracy and reduce the necessity for
extensive model tuning.

Quantization. Since large models require heavy
computational resources, numerous methods have
been developed to reduce their size. Whilst reduc-
ing the precision of model parameters is a simple
method to achieve this, integer quantization can
significantly improve efficiency over floating point
inference (Jacob et al., 2018). Recent methods
are able to perform post-training quantization to 8-
bits with minimal loss in performance (Xiao et al.,
2023a), whilst 4-bit quantization is shown to be
almost universally optimal for the accuracy ver-
sus model size tradeoff (Dettmers and Zettlemoyer,
2023). This is imperative for increasing the acces-
sibility of large models for lower-resource settings,
which is particularly relevant for education to help
maintain equality.

3 Approach

To develop our AI tutor, we first collect relevant,
high-quality data for fine-tuning. Then, using Phi-
3-mini (Abdin et al., 2024) as a base, we adapt
this model for STEM question answering, specifi-
cally for multiple choice questions. Additionally,
we augment our model using RAG to improve
the accuracy of the question answering with exter-
nal knowledge retrieval, whilst also experimenting
with quantization to reduce resource requirements
for our model. A high-level overview of our ap-
proach is shown in Figure 1.

3.1 Dataset Creation

We leverage various sources to collect datasets for
training and evaluating our model.



Figure 1: High-level overview of our approach. We start with Phi-3-mini as a base model and apply DPO using our
preference datasets to align the model towards better reasoning for STEM question answering (yellow box). To
ensure correctly formatted outputs for MCQA, we employ zero-shot prompting, instructing the model to begin its
response with the letter corresponding to the answer. Instead of allowing the model to generate full responses and
then extracting the letter representing the answer to the MCQA question, we constrain the model to generate only
one token. For this token, we take the logits of the four answer options (’A’, ’B’, ’C’, and ’D’) and output the letter
corresponding to the highest logit. This ensures correctly formatted outputs even when other tokens have higher
probabilities (green box). Additionally, we optionally augment the model with RAG. The question is passed as a
query to our knowledge index, the top-k results based on a vector search over the embeddings are retrieved, and
these results are added as context to the prompt (red box). We also benchmark with a quantized model, which has a
significantly reduced memory footprint (blue box).

3.1.1 Preference Data

To align our model for answering EPFL course
questions, we have constructed a dataset of prefer-
ence pairs utilizing multiple sources.

MNLP Students-Annotated Dataset: This
dataset initially comprised approximately 22,000
preference pair samples, gathered from interactions
with ChatGPT. These interactions involved an-
swering questions related to electrical engineering,
computer science, machine learning, and physics
courses at EPFL. Students annotated the responses
based on several criteria including correctness,
relevance, clarity, and completeness. For our
project, which aims to enhance LLMs’ accuracy
in responding to EPFL course-related queries, we
specifically filtered out any preference pairs where
both the chosen and rejected answers were deemed
incorrect.

Computer Science Theory QA Dataset: This
dataset, publicly available on Kaggle (Mateen,
2023), comprises question-answer pairs covering
150 subtopics across diverse Computer Science and
Machine Learning disciplines. To construct a pref-
erence pair dataset, we adopt the methodology pro-
posed by (Huang et al., 2023), which involves trans-
forming correct answers into rejected ones. Specif-
ically, we employ three ChatGPT-driven prompts

to corrupt the answers: REMOVE essential content,
SUBSTITUTE parts of the answer with incorrect
information, or INSERT irrelevant details. For each
transformation, two out of the three corruption tech-
niques are randomly applied to modify the original
correct answer into a rejected one. Detailed de-
scriptions of these corruption prompts are available
in Appendix A.

Camel-AI Math & Physics Datasets: These two
datasets contain over 70,000 examples of various
math and physics questions (Li et al., 2023). Al-
though the datasets are large, the data was synthet-
ically generated by GPT-4 and may contain inac-
curacies as noted by the authors. Each dataset con-
sists of question-answer pairs, allowing us to apply
the same corruption techniques described earlier
to generate rejected answers. Due to budget con-
straints with ChatGPT, we sample approximately
2,500 samples from the Camel-AI Math dataset and
about 3,000 from the Camel-AI Physics dataset.

Stack Exchange Preferences Dataset: This
dataset comprises preference data from over 10
million questions sourced from various Stack Ex-
change forums, including Stack Overflow, Mathe-
matics Stack Exchange, Physics Stack Exchange,
Computer Science Stack Exchange, etc. (Lambert
et al., 2023). Each question is associated with mul-
tiple answers, receiving a preference score based



on user upvotes. We selectively compile prefer-
ence pairs by selecting a "chosen answer" that not
only has the highest preference score among the
answers but also possesses a minimum score of 10.
Simultaneously, we identify a "rejected answer"
with a score between 3 and 5. This selection crite-
rion ensures a high-quality "chosen answer" while
the "rejected answer" is considered adequate, yet
maintaining a significant quality gap between them.
We exclude examples that do not meet these con-
ditions. Through this method, we have collected
approximately 42,000 samples across various rele-
vant domains.

3.1.2 Evaluation Data
To evaluate the accuracy of our model in generating
correct answers, we have gathered various multiple-
choice question answering (MCQA) datasets. We
combine all available data splits to maximize the
number of evaluation examples, as MCQA datasets
are not required for training in our approach (Sec-
tion 3.4).

ARC: This dataset contains grade-school level
multiple-choice science questions. It is divided into
an Easy set and a Challenge set, with 5,196 and
2,590 questions respectively (Clark et al., 2018).

MMLU: This dataset includes multiple-choice
questions from various topics (Hendrycks et al.,
2021a). We retained only a subset of relevant topics
in the domains of mathematics, physics, computer
science, and engineering, resulting in 2,719 ques-
tions. A complete breakdown of topics is provided
in Appendix B.

MATH: This dataset contains 12,500 challeng-
ing competition mathematics problems, each with
step-by-step solutions that contain a free-form an-
swer inside a ‘\boxed{}’ element (Hendrycks et al.,
2021b). We convert this into an MCQA dataset
by synthetically generating three additional answer
options and shuffling them. Since the answers are
not always a single number (for example they can
contain fractions, square roots, etc.), to generate
reasonable options, we first parse all the numbers
from the answer and randomly select one number
to add a value between -5 to 5.

TheoremQA: This dataset contains challenging
university-level questions paired with STEM the-
orems (Chen et al., 2023), designed to benchmark
LLMs’ ability to apply theorems to solve questions
requiring complex reasoning. To test the LLMs’

knowledge and fairly evaluate the impact of model
augmentations, we do not provide the accompany-
ing theorems. Instead, we only provide the ques-
tions, requiring the model to use its internal knowl-
edge and any context from Retrieval-Augmented
Generation (RAG) if provided. Furthermore, we
retain only questions that have numeric answers
and are from relevant domains (mathematics, elec-
trical engineering, computer science, and physics).
The answers can be either a single float or integer,
or a list of numbers. If the answer is a single float
x, we generate three incorrect options as random
numbers in the interval [0.9x, 1.1x]. For integers,
the generation of options follows the same method
as for the MATH dataset. When the answer is a list
of numbers, for each synthetic option, we use the
corresponding method for integers or floats to alter
a number at a randomly selected list index. Using
this approach, we obtain 579 questions.

3.1.3 RAG Data Collection
To construct the knowledge base for our Retrieval
Augmented Generation (RAG)-enhanced model,
it is crucial to ensure that the content is repre-
sentative and specifically tailored to accurately
answer multiple-choice questions (MCQs) from
EPFL courses across several disciplines, including
Computer Science and Systems, Artificial Intelli-
gence and Machine Learning, Theoretical Physics,
and Electrical Engineering. We primarily utilize
the EPFL Moodle and EPFL Study plans platforms
as our main resources. Specifically, they jointly
provide a categorized list of EPFL courses; we
have identified all pertinent courses taught in En-
glish within the categories of Electrical and Elec-
tronics Engineering (EL), Computer Science (IN),
and Physics (PH). A comprehensive list of these
courses, selected based on their relevance to the
topics addressed by this project and the examples
annotated in the initial phases, is detailed in Ap-
pendix C.

For each identified course, we collect RAG ma-
terial primarily from official bibliographies or, if
unavailable, from specific lecture notes provided
by the instructor. This collection strategy ensures
that the materials provided to the RAG are directly
relevant to the core content of the selected courses.

3.2 Base Model

We utilize Phi-3-mini (Abdin et al., 2024), a model
with 3.8 billion parameters, as the base model for
the question-answering task. According to key

https://moodle.epfl.ch
https://edu.epfl.ch/studyplan/en
https://moodle.epfl.ch/course/index.php?categoryid=43
https://moodle.epfl.ch/course/index.php?categoryid=43
https://moodle.epfl.ch/course/index.php?categoryid=46
https://moodle.epfl.ch/course/index.php?categoryid=50


benchmarks, Phi-3-mini outperforms many larger
models in reasoning and logic capabilities. Its
strength lies in a specific two-phase training ap-
proach. In the first phase, the model learns general
knowledge and language understanding primarily
from web sources. The second phase incorporates
heavily filtered web data (a subset used in Phase-1)
along with synthetic data, which teaches the model
logical reasoning and various niche skills through
a curriculum-style learning process.

3.3 Model Alignment
To tailor our general-purpose language model
to answer STEM course questions, we align it
using our preference datasets described in Sec-
tion 3.1.1. We employ Direct Preference Opti-
mization (DPO) (Rafailov et al., 2024b), utiliz-
ing LoRA (Hu et al., 2021) for parameter-efficient
fine-tuning. These methods are implemented using
HuggingFace’s TRL (von Werra et al., 2020) and
PEFT (Mangrulkar et al., 2022).

The DPO objective is defined as follows:

LDPO = − log σ
(
rθ(x, y

+)− rθ(x, y
−)

)
, (1)

where σ is the sigmoid function, and rθ(x, ·) repre-
sents the reward model parameterized by θ applied
to the input prompt x. y+ and y− are responses to
the prompt with y+ being preferred over y−.

Furthermore, we define the reward function as

rθ(x, y) = β log
πθ(y|x)
πref(y|x)

+ β logZ(x) , (2)

where πref is a reference policy, πθ is the model’s
policy, Z(x) is the partition function, and β is a
parameter controlling the deviation from the base
reference policy.

As the preference data is annotated such that
the preferred answers exhibit better correctness,
completeness, and relevancy for questions from
relevant STEM courses, aligning the model with
DPO is expected to further enhance its reasoning
capabilities for STEM question answering.

LoRA is used to fine-tune only a subset of model
parameters, significantly reducing the computa-
tional cost. The LoRA method modifies the orig-
inal weights W by introducing low-rank matrices
A ∈ Rm×r and B ∈ Rr×n, where r < m,n is the
LoRA rank:

W ′ = W +∆W = W +AB . (3)

In Rafailov et al. (2024a), the authors describe
that when performing supervised fine-tuning (SFT)

on the reference model πref, the implicit rewards
of both the chosen and rejected response decline,
though the margin between them increases. How-
ever, when one does not SFT before DPO, there
is little discernible trend in the average implicit
reward and the implicit rewards of the chosen re-
sponses remain above zero, which might lead to
model divergence. However, in our experiments,
performing DPO without any SFT on the reference
policy πref did not result in any divergence issues.

3.4 Formatted Outputs
To specialize our model for multiple choice ques-
tion answering (MCQA), it is essential to ensure
that the outputs are correctly formatted as a single
letter corresponding to the correct answer option.
Our model is tuned to provide not only correct an-
swers but also reasoning that is complete, relevant,
and clear. Therefore, we need an approach that
retains the benefits of instructing the model to rea-
son about the answer (Kojima et al., 2022) while
ensuring the output is a single letter.

We propose two approaches to ensure the output
is in the proper format: Letter Extraction and MCQ-
Logits.

Letter Extraction: In this approach, we examine
the first 10 tokens generated by the model. If one of
these tokens corresponds to one of the four answer
options (’A’, ’B’, ’C’, or ’D’), we set that token as
the model’s output. If none of these tokens match
the answer options, we default to ’C’.

MCQ-Logits: We restrict the model to generate
only one token and then extract the logit values
for the corresponding answer options. The model
outputs the letter corresponding to the highest logit
value. This method ensures correctly formatted
outputs, even when other tokens have higher prob-
abilities or when the model does not provide the
answer in the form of a letter. For instance, the
model might generate a full answer instead of the
answer letter, despite being instructed otherwise.
The green box in Figure 1 illustrates the MCQ-
Logits approach.

For both approaches, we instruct the model to
generate a letter corresponding to the correct an-
swer by relying on in-context learning (Brown
et al., 2020). Additionally, to harness the power of
chain-of-thought prompting (Wei et al., 2023), we
devise the following prompt:

“Start by saying the letter corresponding



to the correct answer (A, B, C, or D), and
include your reasoning after.
Question: [Text of the question]
Answer:”

Since we only need the letter of the answer and
not the reasoning, we stop the generation after 10
tokens for Letter Extraction and after one token
for MCQ-Logits. This approach makes the model
think it should reason when generating, but we do
not let it finish, achieving what we call Truncated
Reasoning, where we ideally obtain the benefits of
chain-of-thought reasoning without the overhead
of generating full answers.

We also employ few-shot in-context learning to
improve the model’s performance (Xie et al., 2022).
Specifically, we provide several examples demon-
strating that the model should generate only the
letter corresponding to the selected answer after

“Answer:”. The few-shot prompt we use is provided
in Appendix D.1.2. Additionally, to fully harness
the power of chain-of-thought prompting, we in-
clude reasoning for each example question after
the answer as given in Appendix D.1.3. This en-
sures that the model first answers with the selected
letter and then reasons about it, so we can apply
Truncated Reasoning.

3.5 Model Augmentations

3.5.1 Retrieval Augmented Generation (RAG)

To enhance the accuracy of our models and fill po-
tential knowledge gaps, we augment the prompts
with relevant contextual information retrieved from
external sources. This method, known as Retrieval
Augmented Generation (RAG), is applied to im-
prove our LLMs.

To integrate RAG into our MCQA pipeline, we
first index the collected documents (collected as
described in Section C) using a vector store index
from the LlamaIndex library (Liu, 2022). The vec-
tor store index splits the documents into chunks
of a specified size, which are then encoded by the
BAAI BGE-large sentence transformer (Xiao et al.,
2023b). Once all the documents and their corre-
sponding chunks are encoded and the document
index is created, we store the index on disk. This
allows us to avoid re-indexing each time we use
our RAG-enhanced LLM.

Then, we extend the pipeline so that before an-
swering a question, we encode it using the BAAI
BGE-large model and retrieve the top-k chunks

from the vector document index with the most sim-
ilar embeddings to the posed question. These re-
trieved chunks are then added as additional context
to the prompt. The template for our RAG prompt
is provided in Appendix D.2.

3.5.2 Quantization
We utilize HuggingFace’s standard 4-bit and 8-
bit quantization methods proposed by Jacob et al.
(2018). These methods convert the 32-bit floating-
point weights of a model into 4- and 8-bit integers.
For the original model, we use the bfloat16 datatype
for training, which is a 16-bit floating-point format
that reduces training time while preserving accu-
racy during optimization.

4 Experiments

4.1 Evaluation
Datasets. We conduct a series of experiments to
evaluate the effectiveness of various large-scale lan-
guage models across multiple MCQA benchmark
datasets, including MMLU, MATH, ARC Chal-
lenging, and TheoremQA, which are described in
detail in Section 3.1.2.

Baselines. We benchmark the Phi-3-mini-4k-
instruct model and its different configurations
aligned with DPO, referred to as ProbLLM-3.8B.

Training. We fine-tune Phi-3-mini-4k-instruct
with DPO and LoRA on one NVIDIA A100
(80GB) GPU. Detailed training hyperparameters
are provided in Appendix E.

Our baseline comparisons involve multiple
prompting techniques and retrieval mechanisms,
including zero-shot, three-shot, and specialized
reasoning prompts, which are described in Ap-
pendix D.1. As discussed in Section 3.4, we ex-
periment with standard answer extraction, referred
to as “Letter Extraction”, where we find the letter
of the selected answer in the generated text. We
also use the character with the largest logit among
all valid multiple-choice answers, referred to as
“MCQ-logits” in the results.

Finally, we explore the impact of quantization on
model size and efficiency, comparing full precision
against 8-bit and 4-bit quantization.

Evaluation metrics. The primary evaluation met-
rics include accuracy and model footprint, which
provide insights into the trade-offs between com-
putational efficiency and model performance. We
also provide a qualitative evaluation in Section 5.



4.2 Results

From Figure 2, we observe that the MCQ-Logits
answer extraction strategy consistently outper-
forms Letter Extraction. Specifically, MCQ-Logits
shows a moderate but persistent improvement in
performance across different few-shot prompting
techniques. Zero-shot prompting combined with
MCQ-Logits achieves the highest average accu-
racy among all datasets, performing slightly worse
on general reasoning benchmarks but excelling on
math-related datasets. For more details, refer to
Appendix Table 5.

Figure 2: Average accuracy achieved by our models
over all datasets per prompting technique and answer
extraction strategy.

Interestingly, despite expectations that few-shot
examples would help the model adjust its logits
better—by showing examples where the first gen-
erated token is always a letter corresponding to
the answer—the results favor zero-shot prompt-
ing. Therefore, we opt for a zero-shot prompting
approach, directly extracting the answer from the
logits of the answer characters for all further model
evaluation and improvement strategies.

We then benchmark our model, ProbLLM-3.8B,
against Phi-3-mini-4k-instruct. As shown in Ta-
ble 1, our DPO-aligned model outperforms the base
Phi-3-mini-4k-instruct across all datasets. These
results demonstrate that DPO alignment has suc-
cessfully enhanced the model’s knowledge and rea-
soning capabilities.

4.2.1 Experiments with Retrieval Augmented
Generation (RAG)

We experimented with various RAG hyperparame-
ters, particularly focusing on the number of chunks
to retrieve from the document index for each ques-
tion.

As shown in Figure 3, the model’s performance

improves when using up to three of the most simi-
lar chunks. Beyond this point, performance starts
to degrade, likely due to the inclusion of less rel-
evant context, which introduces noise and limits
the utility of important information. Although the
optimal number of chunks may vary for different
datasets, we found that using three chunks gener-
ally provided the best results. Therefore, we use
this setting throughout the remainder of our evalua-
tion.

Figure 3: Performance of the model with RAG on the
MMLU dataset, using different numbers of the most
similar chunks to retrieve the context for augmenting
the model’s prompt.

Additionally, we conducted experiments with
models enhanced by RAG. Table 2 compares
the performance of different configurations and
augmentations applied to the ProbLLM-3.8B and
Phi-3-mini-4k-instruct models. While ProbLLM-
3.8B outperforms Phi-3-mini-4k-instruct without
RAG, the trend reverses with RAG enhance-
ment, where Phi-3-mini-4k-instruct achieves some-
what better performance than the DPO-aligned
ProbLLM-3.8B. Overall, RAG models enhance
performance for math-related benchmarks, achiev-
ing the strongest results on MATH. Furthermore,
Phi-3-mini-4k-instruct enhanced with RAG is the
highest-performing configuration on MMLU.

However, for the ARC Challenging and The-
oremQA benchmarks, we observe a surprising
and significant drop in performance with RAG-
enhanced models, resulting in an overall decline
compared to non-augmented models. This could
be explained by the nature of these benchmarks,
as described in Section 3.1.2, and the way we col-
lected the RAG external knowledge base, which
relies on EPFL course materials (Section 3.1.3).
Our RAG knowledge base may lack some general
theorems and knowledge expected by these bench-



Table 1: Benchmark accuracies of evaluated model performances across different evaluation benchmarks.

Model MMLU MATH ARC Challenging TheoremQA
Phi-3-mini-4k-instruct 0.525 0.420 0.869 0.381
ProbLLM-3.8B 0.525 0.424 0.897 0.392

marks, causing the RAG retriever to supply less
relevant context for these questions, thus confusing
the model more than assisting it. Conversely, the
MATH and MMLU benchmarks are more closely
aligned with the material we expect for STEM
EPFL questions, allowing the RAG retriever to
provide more relevant context to our LLMs.

4.2.2 Quantization
We experimented with 4-bit and 8-bit quantization
to augment the model. Figure 4 illustrates how
model performance degrades with different quan-
tization techniques across all datasets. The perfor-
mance drop is most significant for the math-related
datasets, with declines of up to 5%, as shown in Ta-
ble 6 from Appendix. However, these quantization
methods significantly reduce the model’s footprint,
by factors of 6.8× and 3.7× for 4-bit and 8-bit
quantization, respectively.

Figure 4: Difference in model performance with 4-bit,
8-bit, and full-precision on the different benchmark
datasets.

5 Analysis

To evaluate the performance of our model quali-
tatively, we examine individual domains from the
MMLU dataset. This approach allows us to iden-
tify patterns in the model’s strengths and weak-
nesses. Although we can improve on the base
model, the results in Table 3 still show relatively
poor performance in fields such as mathematics
and physics, where complex reasoning is more
likely required. Conversely, the model performs
exceptionally well in biology, which contains more

factual, knowledge-based questions. Thus, whilst
DPO seems like a promising method for improving
complex reasoning, using higher-quality data could
likely improve results further.

We also note that while ProbLLM-3.8B-RAG
performs better in two domains when compared
with Phi-3-mini-4k-instruct-RAG, the latter outper-
forms ProbLLM-3.8B-RAG in all domains where
the data is included in the RAG index database. In
other words, Phi-3-mini-4k-instruct-RAG excels
in domains relevant to EPFL courses, for which
we need to optimize our model. Furthermore, a
qualitative analysis of incorrect answers chosen by
ProbLLM-3.8B-RAG reveals that it often fails to
utilize the available context (see Appendix F). We
argue that DPO may impair the in-context learn-
ing capabilities of our model. This is further sup-
ported by the observation that zero-shot prompting
is more effective than three-shot prompting variants
for ProbLLM-3.8B, as shown in Table 5.

6 Ethical considerations

All of our training and benchmarking is completed
using English datasets, however, it is important to
consider that English is not the primary language
spoken by most people, not only globally but even
within the EPFL community. As such, to improve
the accessibility of our AI tutor to ensure equal-
ity, it will be essential to adapt it to handle other
languages. For high-resource languages, we could
simply use multilingual base models and add educa-
tion data from these languages in the finetuning pro-
cess. For low-resource languages, where less high-
quality data is available and for which pre-trained
multilingual LLMs may underperform (Conneau
et al., 2019), we would likely require additional
dataset curation and training of language-specific
adapters to improve performance (Pfeiffer et al.,
2020).

In addition to spoken languages, adapting our
model for sign language is essential for the inclu-
sivity of the deaf community. This can be achieved
by integrating sign language translation and gen-
eration techniques into the existing model (Bragg
et al., 2019). The process involves translating a



Table 2: Performance evaluations of ProbLLM-3.8B models across different configurations. The values in the cells
correspond to multiple-choice question correctness accuracies, and the cell with the highest accuracy among each
datasets is in bold.

Model MMLU MATH ARC Challenging TheoremQA Overall
ProbLLM-3.8B 0.525 0.424 0.897 0.392 0.559
ProbLLM-3.8B-8bit 0.523 0.407 0.863 0.389 0.546
ProbLLM-3.8B-4bit 0.507 0.356 0.842 0.336 0.510
ProbLLM-3.8B-RAG 0.511 0.457 0.834 0.339 0.535
Phi-3-mini-4k-instruct-RAG 0.526 0.452 0.843 0.342 0.541

Table 3: Performance evaluations of ProbLLM-3.8B models across different domains from MMLU. The values in
the cells correspond to multiple-choice question correctness accuracies.

Domain ProbLLM-3.8B ProbLLM-3.8B-RAG Phi-3-mini-4k-instruct-RAG
College Mathematics 0.302 0.345 0.414

College Physics 0.432 0.398 0.432
College Chemistry 0.480 0.530 0.480

College Computer Science 0.483 0.509 0.552
Machine Learning 0.500 0.446 0.563
College Biology 0.833 0.826 0.813

sign language query into English text, generating
an answer, and then converting the answer back
into sign language.

Whilst our model could significantly benefit stu-
dents and educators if it performs as intended, it is
currently trained on only a subset of STEM topics
offered at EPFL (mathematics, physics, computer
science, and electrical engineering). As a result,
students from other disciplines might be excluded,
potentially undermining equality and fairness. To
address this issue, we should expand the training
data to encompass all courses offered at EPFL.

Furthermore, AI tutors, while beneficial, pose
risks of misuse. Students might use them to cheat
on assignments, which undermines the educational
process. Overreliance on the AI tutor could also
deprive students of critical learning experiences
and potentially mislead them if the model provides
incorrect answers. Establishing strong guidelines
and policies for responsible usage is imperative to
mitigate these risks.

On a broader scale, despite their potential to en-
hance educational outcomes, AI tutors require sig-
nificant computational resources, which can limit
their accessibility. Running such models, even
with optimizations, demands considerable compute
power or stable internet connections, which may
not be available in lower-resource settings. This
limitation could exacerbate educational disparities
between high- and low-socioeconomic communi-

ties. Mitigating this would likely require govern-
ment intervention to ensure AI-based education is
widely accessible.

7 Conclusion

In this work, we demonstrate several promising
approaches for adapting general-purpose LLMs
for STEM education, where the requirement of
complex reasoning makes many current models
insufficient. By using DPO, we can successfully
align the model towards stronger reasoning capabil-
ities for STEM topics. Additionally, we show that
RAG can improve accuracy by integrating external
knowledge, though our current method reveals that
combining DPO and RAG may impair the model’s
in-context learning capabilities. This suggests that
further refinement, such as incorporating RAG con-
text during DPO training, could enhance perfor-
mance. We also explore quantization techniques
to reduce the computational footprint of our mod-
els, making them more accessible for deployment
in resource-constrained environments. Despite a
performance drop with quantization, the significant
reduction in resource requirements is a crucial step
toward the wider availability of AI-based education
tools. Future work should expand training datasets
to cover more courses and develop strategies to mit-
igate DPO’s impact on in-context learning, moving
closer to an effective AI tutor for diverse educa-
tional settings.
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A Corruption prompts

In Table 4, we provide the specific prompts used to corrupt answers for generating the preference pairs
as described in (Huang et al., 2023). These prompts enable the transformation from correct to rejected
answers through deletion, substitution, and insertion of content.

Corruption Type Example
Deletion You are an adversarial actor trying to corrupt the correct answers.

Your goal is to REMOVE some answer content that is useful to the
question.

Substitution You are an adversarial actor trying to corrupt the correct answers.
Your goal is to EDIT some parts of the answer content to make it
INACCURATE for the question.

Insertion You are an adversarial actor trying to corrupt the correct answers.
Your goal is to ADD some answer content irrelevant to the question
into the answer.

Table 4: Detailed Examples of Corruption Prompts

B MMLU Topics

We retain questions from the following subjects in the MMLU dataset, organised by topic and with their
respective question counts:

• Math:

– Abstract Algebra (116)
– Elementary Mathematics (424)
– College Mathematics (116)
– Formal Logic (145)
– High School Mathematics (304)
– High School Statistics (244)

• Physics:

– Astronomy (173)
– College Chemistry (113)
– Conceptual Physics (266)
– College Physics (118)
– High School Physics (173)

• Computer Science:

– College Computer Science (116)
– High School Computer Science (114)
– Machine Learning (128)
– Computer Security (116)

• Engineering:

– Electrical Engineering (166)



C Documents Collection for RAG

We provide a comprehensive list of all EPFL courses for which we have identified relevant documentation
sources (course bibliographies or lecture notes) for our RAG knowledge base. Courses were selected
based on their alignment with topics in the preference pairs dataset. It is important to note that not every
EPFL course from the respective categories is included; many courses were omitted due to overlapping
bibliographies, which made additional documentation redundant.

• Electrical and Electronics Engineering (EL)

– EE-452 Network machine learning
– EE-559 Deep learning
– EE-566 Adaptation and learning

• Computer Science (IN)

– CS-200 Computer architecture
– CS-202 Computer systems
– CS-206 Parallelism and concurrency
– CS-250 Algorithms I
– CS-401 Applied data analysis
– CS-412 Software security
– CS-431 Introduction to natural language processing
– CS-433 Machine learning
– CS-450 Algorithms II
– CS-452 Foundations of software
– CS-456 Artificial neural networks/reinforcement learning
– CS-460 Systems for data management and data science
– CS-503 Visual intelligence: machines and minds
– CS-526 Learning theory
– CS-550 Formal verification
– CS-552 Modern natural language processing

• Physics (PH)

– PHYS-114 General physics: electromagnetism
– PHYS-200 Physics III
– PHYS-207 Quantum mechanics I
– PHYS-313 Quantum physics I
– PHYS-324 Classical electrodynamics
– PHYS-415 Particle physics I
– PHYS-425 Quantum physics III
– PHYS-431 Quantum field theory

D Additional Experiments

D.1 Answer Extraction and Prompting Techniques

D.1.1 Zero-shot prompting
We utilize the following zero-shot prompt:

https://edu.epfl.ch/coursebook/en/network-machine-learning-EE-452
https://edu.epfl.ch/coursebook/en/deep-learning-EE-559
https://edu.epfl.ch/coursebook/en/adaptation-and-learning-EE-566
https://edu.epfl.ch/studyplan/en/minor/computer-science-minor/coursebook/computer-architecture-CS-200
https://moodle.epfl.ch/course/view.php?id=18346
https://edu.epfl.ch/coursebook/en/parallelism-and-concurrency-CS-206
https://moodle.epfl.ch/enrol/index.php?id=13768
https://edu.epfl.ch/coursebook/en/applied-data-analysis-CS-401
https://edu.epfl.ch/coursebook/en/software-security-CS-412
https://edu.epfl.ch/coursebook/en/introduction-to-natural-language-processing-CS-431
https://edu.epfl.ch/coursebook/en/machine-learning-CS-433
https://moodle.epfl.ch/enrol/index.php?id=13734
https://edu.epfl.ch/coursebook/en/foundations-of-software-CS-452
https://edu.epfl.ch/coursebook/en/artificial-neural-networks-reinforcement-learning-CS-456
https://edu.epfl.ch/coursebook/en/systems-for-data-management-and-data-science-CS-460
https://edu.epfl.ch/coursebook/fr/visual-intelligence-machines-and-minds-CS-503
https://edu.epfl.ch/coursebook/en/learning-theory-CS-526
https://edu.epfl.ch/coursebook/en/formal-verification-CS-550
https://edu.epfl.ch/coursebook/en/modern-natural-language-processing-CS-552
https://edu.epfl.ch/coursebook/en/general-physics-electromagnetism-PHYS-114
https://edu.epfl.ch/coursebook/en/physics-iii-PHYS-200
https://moodle.epfl.ch/course/view.php?id=18369
https://edu.epfl.ch/coursebook/en/quantum-physics-i-PHYS-313
https://edu.epfl.ch/coursebook/en/classical-electrodynamics-PHYS-324
https://edu.epfl.ch/coursebook/en/particle-physics-i-PHYS-415
https://edu.epfl.ch/coursebook/en/quantum-physics-iii-PHYS-425
https://edu.epfl.ch/coursebook/en/quantum-field-theory-i-PHYS-431


“Start by saying the letter corresponding to the correct answer (A, B, C, or D), and include
your reasoning after.

Question: [Text of the question]

Answer:”

D.1.2 3-shot prompting
We utilize the following 3-shot prompt:

“Start by saying the letter corresponding to the correct answer (A, B, C, or D), and include
your reasoning after.
You are a specialist at solving engineering-related questions and are rewarded handsomely
for each correct answer. You will be given multiple choice questions that you have to answer,
which you will answer with a single character indicating your choice. The following are some
examples of the expected input and output:

Question: Statement 1| Linear regression estimator has the smallest variance among
all unbiased estimators. Statement 2| The coefficients α assigned to the classifiers assembled by
AdaBoost are always non-negative.

Options:
A. True, True
B. False, False
C. True, False
D. False, True

Answer: D

Question: A rise in intracellular free calcium in the sea urchin oocyte causes the re-
lease of proteolytic enzymes which act to prevent polyspermy. The events just described entail
the?

Options:
A. zona reaction
B. acrosomal reaction
C. cortical reaction
D. fertilization reaction

Answer: C

Question: Of the following atoms, which has the lowest electron affinity?

Options:
A. F
B. Si
C. O
D. Ca

Answer: D

Question: [Text of the question]



Answer:”

D.1.3 3-shot prompting + reasoning
We utilize the following 3-shot prompt with reasoning:

“You are a specialist at solving engineering-related questions and are rewarded handsomely
for each correct answer. You will be given multiple choice questions that you have to answer,
which you will answer with a single character indicating your choice. The following are some
examples of the expected input and output:

Question: Statement 1| Linear regression estimator has the smallest variance among
all unbiased estimators. Statement 2| The coefficients α assigned to the classifiers assembled by
AdaBoost are always non-negative.

Options:
A. True, True
B. False, False
C. True, False
D. False, True

Answer:D

Reasoning: Statement 1 is false because only linear estimators are considered in the
Gauss-Markov theorem. Statement 2 is true as coefficients in AdaBoost are non-negative.

Question: A rise in intracellular free calcium in the sea urchin oocyte causes the re-
lease of proteolytic enzymes which act to prevent polyspermy. The events just described entail
the?

Options:
A. zona reaction
B. acrosomal reaction
C. cortical reaction
D. fertilization reaction

Answer:C

Reasoning:The cortical reaction releases enzymes to prevent multiple sperm from fer-
tilizing the egg, thus preventing polyspermy.

Question: Of the following atoms, which has the lowest electron affinity?

Options:
A. F
B. Si
C. O
D. Ca

Answer:D

Reasoning:Ca, being a metal, typically has lower electron affinity compared to non-
metals like F, Si, and O.



Question: [Text of the question]

Answer:”

D.2 Zero-shot prompting + RAG
We utilize the following prompting scheme for RAG:

“Start by saying the letter corresponding to the correct answer (A, B, C, or D), and include
your reasoning afterwards. You can use the contextual knowledge we provide to help you
answer the question.

Contextual knowledge 1: [Text of context]

Contextual knowledge 2: [Text of context]

Contextual knowledge . . . : [Text of context]

Contextual knowledge n: [Text of context]

Question: [Text of the question]

Answer:”

D.3 Prompting Techniques and Answer Extraction

Table 5: Multiple-choice question answering accuracy for different prompting techniques (few-shot ± reasoning)
and answer extraction schemes (MCQ-Logits or not). The bold cells attain the highest performance among models
on the corresponding dataset.

Prompting Technique MMLU MATH ARC Challenging TheoremQA
0-shot 0.517 0.329 0.852 0.363
3-shot 0.541 0.307 0.873 0.385
3-shot reasoning 0.543 0.332 0.874 0.363
0-shot MCQ-Logits 0.525 0.424 0.867 0.392
3-shot MCQ-Logits 0.541 0.308 0.872 0.378
3-shot reasoning MCQ-Logits 0.537 0.332 0.874 0.373

D.4 Quantization

Table 6: Performance of models across different quantization levels

Quantization Model Size (Bytes) MMLU MATH ARC Challenging TheoremQA
Full-precision 15334649856 0.525 0.424 0.897 0.392

8-bit 4068612096 0.523 0.407 0.863 0.389
4-bit 2256627268 0.507 0.356 0.842 0.336

E Training Hyperparameters

Parameter Value
Seed 0



Parameter Value
Precision bfloat16
Optimizer paged_adamw_32bit

Top_k 50
Top_p 1
Steps 2000

Epochs 1.533
Adam_beta1 0.9
Adam_beta2 0.999
Eval_steps 100
Hidden_act silu

Max_generation_length 1024
Vocab_size 102400

Adam_epsilon 1e-8
Learning_rate 1e-5

Learning_rate_schedule cosine
Warmup_ratio 0
Warmup_steps 100
Weight_decay 0.05

Max_grad_norm 1
DPO_beta 0.05
Lora_alpha 16

Lora_r 8
Lora_dropout 0.05

Batch_size 8

F RAG Failure Cases

We now show three examples where the RAG model could have utilized its context to solve the given
question, but failed to do so.

Question 1
Prompt: Start by saying the letter corresponding to the correct answer (A, B, C, or D), and include

your reasoning afterwards. You can use the contextual knowledge we provide to help you answer the
question.

Contextual knowledge 1: Figure 10.10 describes the architecture of a convolutional network model,
specifically VGG-16, which features standard neural network layers with full connectivity and no parame-
ter sharing. The final max-pooling layer comprises 512 channels, each of size 7× 7, totaling 25,088 units.
This is followed by a series of fully connected layers with 4,096 units each, and a final layer consisting of
1,000 units tailored for a classification task involving 1,000 different classes. All layers, except for the
output layer which utilizes a softmax activation function, employ nonlinear ReLU activations. VGG-16
has approximately 138 million learnable parameters, with the majority (nearly 103 million) in the first
fully connected layer.

Contextual knowledge 2: The described architecture employs bottleneck residual blocks instead of
traditional convolutional layers, similar to AlexNet and VGG. These blocks are interspersed with periods
of decreasing spatial resolution and increasing channel numbers, achieved through downsampling via
stride two convolutions and enhancements via 1x1 convolutions or zero-padding. The network starts with
a 7x7 convolutional layer, proceeds through downsampling, and concludes with a fully connected layer
that outputs a 1000-length vector, processed by a softmax layer for class probability estimation. The
ResNet-200 model, using this architecture, achieved a top-five error rate of 4.8% and a top-one error rate
of 20.1%, surpassing human performance benchmarks at the time of its conception in 2016.

Contextual knowledge 3: Graph neural networks integrate many existing graph algorithms into
a cohesive framework, with significant applications in areas like graph and node classification, edge



prediction, and graph clustering. Introduced by Gori et al. (2005) and further developed by Scarselli et
al. (2008), these networks update node embeddings iteratively through a contraction mapping function,
incorporating both node and edge information from the network’s graph structure.

Question: As of 2020, which architecture is best for classifying high-resolution images?
Options:

• A. convolutional networks

• B. graph networks

• C. fully connected networks

• D. RBF networks

Answer: Actual: A Pred: B
Question 2
Prompt: Start by saying the letter corresponding to the correct answer (A, B, C, or D), and include

your reasoning afterwards. You can use the contextual knowledge we provide to help you answer the
question.

Contextual knowledge 1: Decision Trees involve a representation where each block can be described
using log2(d+3) bits, assuming each internal node branches into two children. The encoding of a decision
tree with n nodes can be described by a length of (n+ 1) log2(d+ 3). By Theorem 7.7, for any decision
tree h ∈ H with n nodes, sampled over size m, the true risk LD(h) is bounded as:

LD(h) ≤ LS(h) +

√
(n+ 1) log2(d+ 3) + log(2/δ)

2m
(18.1)

This suggests a trade-off between the complexity of the tree and its empirical risk LS(h). The goal is to
find a tree that balances low empirical risk with a manageable number of nodes.

Contextual knowledge 2: Decision Tree Algorithms utilize Equation (18.1) to derive a learning rule,
which suggests searching for a tree that minimizes the right-hand side of the equation. However, this
problem is computationally challenging. Practical decision tree algorithms, therefore, rely on heuristics
like greedy approaches where decisions are made locally at each node construction. The growth of a
decision tree starts with a root and iteratively splits leaves to maximize a defined "gain" measure, typically
choosing the split that maximizes gain or opting not to split at all.

Contextual knowledge 3: Randomized Decision Trees consider a model where branches are determined
either by a deterministic process or a random decision, focusing on distributions over deterministic trees.
For an input x, the expected number of queries a tree makes is denoted by c(P, x). The randomized
decision tree complexity, R(f), is defined as:

R(f) = min
P

max
x

c(P, x) (7)

This complexity metric evaluates how effective the best possible tree distribution performs against the
worst possible input.

Question: Evaluate the following statements:

1. For a continuous random variable x and its probability distribution function p(x), it holds that
0 ≤ p(x) ≤ 1 for all x.

2. Decision tree learning is driven by minimizing information gain.

Options:

• A. True, True

• B. False, False



• C. True, False

• D. False, True

Answer: Actual: B Pred: A
Question 3
Prompt: Start by saying the letter corresponding to the correct answer (A, B, C, or D), and include

your reasoning afterwards. You can use the contextual knowledge we provide to help you answer the
question.

Contextual knowledge 1: Supervised Learning Training and Testing

• Training involves finding parameters that minimize the loss, termed as model fitting. This process
usually starts with random parameter values and improves by gradient descent until no further
improvements can be made.

• Testing evaluates how the model performs on new, unseen data. The performance depends partly on
the training data’s representativeness and the model’s expressiveness. Overfitting and underfitting
are critical issues affecting model performance.

Contextual knowledge 2: Generalization Theory

• Overly complex models can overfit, performing well on training data but poorly on new data, while
overly simple models might underfit, failing to capture the underlying pattern of the data.

• The bias-variance tradeoff is a fundamental concept in model design, aiming to balance simplicity
and complexity to minimize overall error.

Contextual knowledge 3: Model Selection and Validation

• Model selection involves choosing the best model and setting its parameters based on how well it fits
the training data without overfitting.

• For instance, choosing the degree of a polynomial in regression affects whether the model will
underfit or overfit the data.

Question: _refers to a model that can neither model the training data nor generalize to new data.
Options:

• A. good fitting

• B. overfitting

• C. underfitting

• D. all of the above

Answer: Actual: C Pred: A
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