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Abstract

Efficient job allocation in complex scheduling problems poses significant chal-
lenges in real-world applications. In this report, we propose a novel approach that
leverages the power of Reinforcement Learning (RL) and Graph Neural Networks
(GNNs) to tackle the Job Allocation Problem (JAP). The JAP involves allocating a
maximum set of jobs to available resources while considering several constraints.
Our approach enables learning of adaptive policies through trial-and-error inter-
actions with the environment while exploiting the graph-structured data of the
problem. By leveraging RL, we eliminate the need for manual annotation, a ma-
jor bottleneck in supervised learning approaches. Experimental evaluations on
synthetic and real-world data demonstrate the effectiveness and generalizability
of our proposed approach, outperforming baseline algorithms and showcasing its
potential for optimizing job allocation in complex scheduling problems.

1 Introduction

Efficient job allocation plays a vital role in diverse fields, including healthcare, logistics, and manu-
facturing, enabling optimal utilization of resources and ensuring timely completion of tasks [Owliya
et al., 2012, Bash and Forman, 2007, Kumar et al., 2018, Vijayakumar et al., 2022]. The Job Al-
location Problem (JAP), which is introduced and investigated in this report, involves assigning a
maximum number of jobs to available resources, taking into account various constraints. Traditional
approaches to general scheduling [Crama, 1997, Pinedo, 2012], rooted in Combinatorial Optimization
(CO), have provided valuable insights into the inherent challenges and trade-offs in solving allocation
problems, but they often struggle to handle the increasing complexity and real-time dynamics of
modern applications [Wolsey and Nemhauser, 1999, Chaudhry and Khan, 2016].

To address these limitations, recent research has turned to machine learning techniques to learn
effective schedules [Zhang et al., 2020, 2022, Park et al., 2021, Chen et al., 2021]. However, the
requirement of annotated data in supervised learning poses a problem for scheduling problems. Hence,
it is currently infeasible to do supervised learning on NP-Hard problems [Yehuda et al., 2020].

Our approach showcases the use of reinforcement learning (RL) as a powerful technique to overcome
the challenges posed by the requirement of annotated data. By learning directly from simulations
and observing performance signals Kaelbling et al. [1996], our framework mitigates the need for
extensive manual labeling. This enables us to leverage the benefits of RL for job allocation in a more
practical and scalable manner.

Furthermore, we use graph neural networks to exploit the graph structure of the problem, as is
commonly done in machine learning for CO problems [Wang and Gombolay, 2020, Gasse et al.,
2019, Schuetz et al., 2022].

To evaluate the performance of our proposed approach, we conducted experiments on both real-world
and synthetic datasets. We compared our model with baseline algorithms. We demonstrate that the



GNN consistently outperformed the baseline algorithms. Furthermore, out-of-distribution testing
revealed the generalizability of the GNN.

The remaining structure of the report is as follows: in Sec. 2, we give a background and discuss the
most promising research related to our work. Then, in Sec. 3, we formalize the JAP. In Sec. 4, we
discuss the RL framework used to approach the problem. Then, we describe the model architecture
and the training process in Sec. 5. Finally, we discuss experimental results in Sec. 6 and make
conclusions in Sec. 7.

2 Related Works

The approach introduced in this report lies in the fields of combinatorial optimization, graph neural
networks, and reinforcement learning. In this section, we discuss the most prominent research and
explain its relation to our work.

Combinatorial Optimization (CO) has been a cornerstone in tackling complex allocation problems.
Previous research has delved into various formulations and algorithms to optimize the allocation of
limited resources efficiently. The exploration of heuristics [Colorni et al., 1996, Lorena and Narciso,
1996], approximation algorithms [Vazirani, 2001, Turek et al., 1992], and exact methods [Wolsey
and Nemhauser, 1999] has paved the way for understanding the inherent challenges and trade-offs in
solving CO problems. In particular, studies addressing job allocation [Penmatsa and Chronopoulos,
2006], nurse rostering [Burke et al., 2004], and other scheduling problems [Chaudhry and Khan,
2016] have contributed valuable insights into the allocation domain.

In recent years, Graph Neural Networks (GNNs) have proven to be powerful tools for analyzing
and learning on graph-structured data [Zhou et al., 2020, Wu et al., 2020]. Advanced architectures
such as the Graph Attention Network (GAT) [Veličković et al., 2018] and Graph Isomorphism
Network (GIN) [Xu et al., 2019] have demonstrated remarkable capabilities in tackling node/edge-
level and graph-level machine learning tasks, respectively. Importantly, the application of GNNs to
combinatorial optimization has shown promise in effectively leveraging the inherent graph structure
found in various problem domains [Gasse et al., 2019, Cappart et al., 2021, Schuetz et al., 2022],
while also providing the benefit of invariance to the size of the graph. In this work, we utilize graph
attention networks in this work since we are learning representations of edges.

Reinforcement Learning (RL) provides a principled framework for learning optimal policies
through trial-and-error interactions with an environment. RL has demonstrated remarkable successes
in various domains, from game-playing agents to robotic control [Mahmud et al., 2018, Polydoros and
Nalpantidis, 2017]. When applied to scheduling problems, RL offers the potential to learn adaptive
policies that optimize assignments and resource utilization [Zhang et al., 2020, Park et al., 2021].

As the JAP is a novel problem introduced in this report, there are no existing works directly addressing
this problem. Nevertheless, previous studies have examined supervised learning approaches in other
similar scheduling problems, by for example learning priority dispatch rules Chen et al. [2021],
Ingimundardottir and Runarsson [2011] to compute allocation policies, but the requirement of manual
labels presents a significant challenge. To overcome this limitation, recent research has turned its
attention to RL [Park et al., 2021, Zhang et al., 2020, Kayhan and Yildiz, 2021], which can learn
directly from simulations and observe performance without relying on manual labels.

In this report, we investigate the viability of RL for the JAP. We achieve this by formulating the
problem within the RL framework and leveraging Deep Q-learning [Mnih et al., 2015] in conjunction
with graph neural networks.

3 The Job Allocation Problem

In this section, we formally introduce the Job Allocation Problem (JAP), and its classical optimization
formulation.

Notation: A graph G(V,E) denotes a directed graph where V represents the vertex set and E
represents the edge set. We note that {i, j} ∈ E represents an undirected edge, while (i, j) ∈ E
represents a directed edge. We define Nin(v) and Nout(v) as the in- and out-neighborhoods of vertex
v. The in- and out-degree of a vertex v are then defined as din(v) = |Nin(v)| and dout(v) = |Nout(v)|.
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Definition 1 (Job Allocation Graph). An arbitrary graph G(A,B) is called a job allocation graph if
we can partition G as G(P ∪ J, S ∪ C) where P ∩ J = ∅ and S ∩ C = ∅, such that ∀{v, w} ∈ S :
[v ∈ P ∧ w ∈ J ] ∨ [v ∈ J ∧ w ∈ P ] and ∀(v, w) ∈ C : v, w ∈ J .

Whilst the remainder of this report will talk about people and jobs, any graph that satisfies definition 1
can be described under the framework introduced in this report. Fig. 1 depicts an example of such a
graph, where P represent the people vertices and J represents the job vertex set. The structure of
the graph is bipartite between the people and job vertices, with additional edges from jobs to other
jobs. We call the undirected edge set between jobs and people the "selection set" S. For directed
edges from jobs to other jobs, we define the "conflict set" C. Formally, a directed edge (ji, jk) ∈ C
semantically means that if the job ji is selected by a person p, then the job jk cannot be done by the
same person. An edge (p, j) ∈ S means that person p can do the job j.

Figure 1: Example of the problem instance. We have individuals represented by p0, · · · , p3 ∈ P ,
and jobs denoted by j0, · · · , j4 ∈ J . The red selection edges from set S connect people to jobs,
signifying that a person is qualified to do a job. Additionally, there are directed blue conflict edges in
set C. These connect jobs, indicating that if a person p is assigned to a job vertex j, then that person
cannot also be assigned to any j′ ∈ Nout(j).

Definition 2 (Maximum Job Allocation). Given a graph G(P ∪J, S∪C) that adheres to definition 1,
a maximum job allocation is a solution to the following constrained maximization problem:

maximize |A| ,
s.t. A ⊆ S ,

and ∀{pi, ji}, {pi, jk} ∈ A : (ji, jk) ∈ C ∨ (jk, ji) ∈ C ⇒ i = k .

We call a job allocation any subset A ⊆ S that satisfies the constraints in definition 2. The goal of the
JAP is to find the maximum number of job assignments such that there are no conflicts between the
jobs assigned to the same person.

4 Optimal Job Allocations through Reinforcement Learning

In Sec. 3, we discuss how to formalize the JAP and how an optimum solution to the problem is
defined. In this section, we discuss how we formulate the JAP as a sequential decision-making
problem using the Reinforcement Learning framework.
Definition 3 (Markov Decision Process (MDP)). A Markov Decision Process (MDP) is defined as a
5-tuple (S,A,P,R, γ), where S is a set of states and A is a set of actions. P : S × A → S is the
transition function that captures the probability of transitioning to a state s′ ∈ S given a current state
s ∈ S and an action a ∈ A taken in s. R : S ×A → S is a function that defines the reward given
when transitioning to state s′ ∈ S from state s ∈ S and taking action a ∈ A. Finally, γ ∈ [0, 1] is
the discount factor, which emphasizes the importance of future rewards.

When a problem can be formalized as an MDP, as seen in definition 3, it can be solved using RL. We
will begin by describing the state space S, which will be the set of all job allocation graphs. This
means that any job allocation graph is equivalent to a state in the MDP.

Given a job allocation graph, the actions should allow for a job assignment to be selected. The
idea behind this approach is the fact that assignments can be selected sequentially while eliminating
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constraint violations with the transition function. Hence, the action spaceA for a job allocation graph
G(P ∪ J, S ∪ C) is equivalent to the selection set S, as these are all possible job assignments.

In order to ensure a valid job allocation graph is maintained after choosing an action, the transition
function behaves as follows: given a graph G(P ∪ J, S ∪ C) and action {p, j}, it deterministically
maps to a new graph G′(P ∪ J, S′ ∪C ′), where S′ = S \ {{p, j}} \ {{p, ji}|(j, ji) ∈ C} 1. As can
be seen, the transition function eliminates any assignments that person p cannot do anymore after
choosing to do job j. This ensures that any transition to a new graph maintains feasibility.

An episode with T steps is completed when a terminal state is reached. A terminal state is a graph
G(P ∪ J, S ∪ C) where no further assignments are possible, that is, S = ∅. The set of all the job
allocations in the episode A = {a1, a2, · · · , aT } is a feasible solution to the problem. It is important
to note that, starting from any job allocation graph, the optimum solution A∗ can be reached by
picking the assignments in A∗ in any order as actions. One consideration is that this implies that
there are a lot of symmetries, which can make it more difficult to solve the problem. This has been
addressed in Kwon et al. [2020], but this work has not been adopted in this report.

The reward function gives a reward of 1 at each step of the environment, which means that the
maximum cumulative reward attainable can be bounded from above by |S|. The discount factor γ is
set to 1 since the total cumulative reward from the beginning of the episode is equal to the cardinality
of the set of solutions.

Figure 2: Example of a transition (st, at, rt, st+1) in the MDP. When action {p0, j0} is picked, its
edge and the edge between p0 and j1, which conflicts with j0, are removed from the graph in st+1

(depicted as transparent edges).

An example of a transition of the model can be seen in Fig. 2. Since the state space S is too large
for tabular reinforcement learning methods, we utilize techniques for reinforcement learning with
function approximation. In Sec. 5, we describe how we do this using graph neural networks.

5 Graph Neural Network-Based Algorithm for MIS

As discussed in Sec. 4, the state space of the MDP is too large to be approached with tabular
reinforcement learning. By leveraging the graph structure of the states, we use graph neural networks
to approximate Q-values. We first discuss the architecture of the model in Sec. 5.1, and then describe
the training pipeline in Sec. 5.2.

5.1 Function Approximation with Graph Neural Networks

The goal is to design a model Qθ(s, a) ≈ Q∗(s, a), where θ ∈ Θ are parameters and Q∗(s, a) are the
optimum Q-values. We develop a novel graph neural network module, the Context-Aware Embedding
(CAE) module, in order to effectively utilize the specific graph structure of the problem. We then use
this module in the complete model architecture.

Given a graph G(J ∪ P, S ∪ C) and initial vertex embeddings µ0 ∈ R|P |×2, ν0 ∈ R|J|×2, which
are just the out-degrees of the vertices for the two edge types, the high-level model architecture
can be seen in Fig. 3. Initially, the graph and the embeddings are sequentially put through K CAE
modules, parameterized by θi ∈ Θ, where Θ for all i = 1, · · · ,K. We note that Θ is the parameter

1It is important to realize that, since job allocation graphs are equivalent to states, this represents a determin-
istic transition with P[G′|G, {p, j}] = 1.
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Figure 3: Overview of the model architecture. First, a job allocation graph G(J ∪ P, S ∪ C) with
initial node embeddings µ0 ∈ R|P |×2, ν0 ∈ R|J|×2 is put through K Context-Aware Embedding
modules with parameters θi ∈ Θ for i = 1, · · · ,K. Afterward, Q-values can be predicted by doing
an inner product of the corresponding vertex embeddings. For example, for the highlighted edge
{p0, j0}, Qθ(G, {p0, j0}) = µKT

0 νK0 .

space. These modules compute node embeddings µi for person vertices and νi for job vertices
for i = 1, · · · ,K. Finally, Q-values can easily be computed by taking a dot product between the
final embeddings for two vertices of a given selection edge. For example, the estimated Q-value of
choosing the person p to do the job j can be calculated as Qθ(G, {p, j}) = µKT

p νKj .

Figure 4: Overview of the Context-Aware Embedding Module. Given a graph G(P ∪ J, S ∪ C)
and vertex embeddings µ ∈ R|P |×din , ν ∈ R|J|×din , the module first splits it into two subgraphs
G(P∪J, S) and G(J,C). Then, these subgraphs are put through their own GAT layers, parameterized
by θ0, θ1 ∈ Θ. The final embeddings of the job vertices are then computed by combining them
symmetrically using the learned linear function fθ2 with parameters θ2 ∈ Θ.

Context-Aware Embedding (CAE) Module:

The module is depicted in Fig. 4. From a graph G(J ∪ P, S ∪ C) and its current vertex embeddings
µ ∈ R|P |×din and ν ∈ R|J|×din where din is the dimensionality of a single vertex embedding. The
CAE module operates by splitting G into two subgraphs G(J ∪ P, S) and G(J,C). Then, these
graphs are put through their own attention layers [Veličković et al., 2018] with parameters θ0, θ1 ∈ Θ
to update the node embeddings of the subgraphs. This splitting into subgraphs is inspired by Zhang
et al. [2022], which utilizes the same idea, since the edges have semantically different meanings. In
the case of the JAP, selection edges are good to have, whilst conflict edges are bad to have. Since we
have two sets of embeddings for the job vertictes after the attention layers, let’s say ν′0 ∈ R|P |×dout

and ν′1 ∈ R|J|×dout where dout is the output dimensionality of the vertex embeddings, we combine
them into one as follows:
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ν =
1

2
(fθ2(ν0, ν1) + fθ2(ν1, ν0)) ,

fθ2(x, y) = 1 + λFCθ2([x∥y]) .
(1)

Here, λ ∈ R is a learned parameter that modulates how far to deviate from a baseline value of 1.
Furthermore, [x∥y] ∈ R|x|+|y| represents the vector concatenation of x and y, and FCθ2 is a fully
connected layer with parameters θ2 ∈ Θ. The form of this equation has been proposed by Bachlechner
et al. [2020] and is meant to allow faster convergence.

We note that, whilst it has been omitted from Fig. 3 for readability purposes, each CAE layer except
for the last is followed by Layer Normalization [Ba et al., 2016] and the GELU [Hendrycks and
Gimpel, 2016] activation function.

5.2 Optimizing the Model with Deep Reinforcement Learning

We optimize the model using Double Deep Q-Learning [Van Hasselt et al., 2016], which addresses
stability and overestimation problems in Deep Q-Learning [Mnih et al., 2015]. In order to improve
sample efficiency, we also utilize prioritized experience replay [Schaul et al., 2015], which samples
from a replay buffer according to Eq. (2). Here, δi represents the Q-learning error of sample i, and ϵ

is a small value to avoid division by zero. Importance weights wi =
(N ·P (i))−β

maxj wj
are used to correct

the non-uniform sampling procedure. Hyperparameters α and β regulate the sampling and correction
strengths respectively.

P (i) =
pαi∑
j p

α
j

, pi = |δi|+ ϵ . (2)

The full algorithmic pipeline of the training process is described in Algorithm 1.

Algorithm 1 Pipeline of the Training Approach

1: Input: A distribution D over job allocation graphs, soft update rate parameter τ , prioritized
experience replay parameters α and β, batch size b, learning rate η.

2: Initialize Qθ and make copy Qtarget ← Qθ.
3: Initialize a prioritized replay buffer B ← ∅.
4: for each episode t = 0, . . . , T − 1 do
5: Sample a graph Ginit(P ∪ J, S ∪ C) ∼ D.
6: Let s← Ginit(P ∪ J, S ∪ C).
7: while S ̸= ∅ do
8: Sample a← {p ∈ P, j ∈ J} ∼ softmaxā∈S(Qθ(s, ā)). ▷ Sample a job assignment.
9: Receive r ← 1.

10: Update S′ = S \ {{p, j}} \ {{p, ji}|(j, ji) ∈ C}. ▷ Remove conflicting edges.
11: Update s′ ← s(P ∪ J, S′ ∪ C).
12: Store (s, a, r, s′, p) in B.
13: Set ∆ = 0.
14: for i = 1, · · · , b do
15: Sample k ∼ pα

k∑
j pα

j
.

16: Compute wk = (N ·P (k))−β

maxj wj
.

17: Compute δk = rk + γQtarget(s
′
k, argmaxa′ Qθ(s

′
k, a

′))−Qθ(sk, ak).
18: Update transition priority pk ← |δi|+ ϵ.
19: Accumulate ∆← ∆+ wk · δk · ∇θQθ(sk, ak).
20: end for
21: Update θ ← θ + η∆. ▷ Mini-batch Gradient Descent.
22: Update Qtarget ← τQθ + (1− τ)Qtarget.
23: s← s′.
24: end while
25: end for
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6 Experiments

In this section, we evaluate the proposed approach of this report against baseline algorithms. First,
we describe the training setup and datasets. Additional experiments on insights into the learned
representations of the model can be found in Appendix B.

6.1 Training Setup

Our model: We use the model with 16 neurons in all hidden layers, and 8 in the output layer. Each
hidden layer is equipped with Layer Normalization, followed by the GELU activation function. We
stack 3 CAE modules, thus setting K = 3 in Fig. 3. We refer to this model as the GNN.

The specific hyperparameters during training can be found in Appendix A. The model is optimized
for 200 episodes using the Adam optimizer with weight decay [Loshchilov and Hutter, 2017].

Baselines: We utilize three baseline algorithms to compare our performance. The first, which we
refer to add Greedy, first selects the job with the minimum degree. Then, for that job, it chooses the
person with the minimum degree connected to it. We also have a Random algorithm, which randomly
selects assignments and an Untrained GNN with a random model initialization.

Datasets: We evaluate our model on a real-world hospital dataset (Planny) and two synthetically
generated datasets. The latter two are random network datasets generated using the Erdős–Rényi and
Barabási–Albert models. Some key statistics of these datasets can be found in Appendix A.

6.2 Results

As per the findings presented in Table 1, it becomes evident that the Greedy algorithm serves as
a robust baseline across all datasets. However, the Graph Neural Network (GNN) demonstrates
superior performance across each dataset, particularly for Erdős–Rényi instances. Nevertheless, for
the Barabási–Albert dataset, it remains uncertain if the model has effectively acquired any meaningful
knowledge, given that the minimum performance is already nearly optimal.

Table 1: Approximation ratios (higher is better; the best performance in bold) on different synthetic
datasets and a real-world dataset (Planny). We report the average approximation ratios along with the
standard deviation.

Method (↓) Dataset (→) Planny Erdős–Rényi Barabási–Albert
GNN 0.989± 0.013 0.981± 0.010 0.999± 0.002

Greedy 0.987± 0.026 0.962± 0.014 1.000
Random 0.969± 0.041 0.924± 0.021 0.996± 0.004

Untrained GNN 0.916± 0.088 0.915± 0.027 0.999± 0.005

To assess the generalizability of each model, out-of-distribution testing is conducted on the re-
maining datasets, and the corresponding results are provided in Table 2. The model trained on the
Barabási–Albert dataset exhibits performance on par with a random model, suggesting that this
dataset might not have provided the model with ample opportunities to learn a valuable representation,
given that most assignments are already close to optimality. Interestingly, the other models achieve
optimal scores on the Barabási–Albert dataset. Both the Planny GNN and the Erdős–Rényi GNN
surpass the Greedy algorithm on the other datasets, despite not being trained on them.

Table 2: Approximation ratios (higher is better; the best performance in bold) of out-of-distribution
models. We report the average approximation ratios along with the standard deviation.

Method (↓) Dataset (→) Planny Erdős–Rényi Barabási–Albert
Planny GNN 0.989± 0.013 0.970± 0.012 1.000

Erdős–Rényi GNN 0.984± 0.023 0.981± 0.010 1.000
Barabási–Albert GNN 0.968± 0.040 0.928± 0.024 0.999± 0.002

Finally, we conduct out-of-distribution experiments using datasets generated by Erdős–Rényi models,
varying the numbers of jobs and densities of graphs. The experimental results are illustrated in Fig. 5.
Our findings demonstrate that the performance of the GNN model is comparable to, and occasionally
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surpasses, that of the Greedy model. These outcomes suggest favorable scalability of the GNN model
to larger and more diverse instances.

(a) Changing the probability of an edge with a fixed
300 jobs. It was trained on graphs with an edge
probability of 0.10.

(b) Changing the number of jobs with a fixed edge
probability of 0.10. It was trained on graphs with
300 jobs.

Figure 5: Out-of-distribution performance of the algorithms when tweaking the individual parameters
of the Erdős–Rényi model.

7 Conclusion

In this report, we proposed a novel approach that combines Reinforcement Learning with Graph
Neural Networks to tackle the Job Allocation Problem. We formulated the JAP as a Markov Decision
Process and developed a model architecture that utilizes Graph Neural Networks to approximate
Q-values. Our approach eliminates the need for manual annotation, which is often a major bot-
tleneck in supervised learning approaches. Through experimental evaluations on real-world and
synthetic datasets, we demonstrated that our proposed approach outperforms baseline algorithms,
including a greedy algorithm and random models. The Graph Neural Network consistently achieves
higher approximation ratios, showcasing its effectiveness in solving the JAP. Furthermore, the GNN
model exhibited generalization capabilities, achieving competitive performance on out-of-distribution
datasets. Overall, our findings highlight the potential of leveraging Reinforcement Learning and
Graph Neural Networks for optimizing job allocation in complex scheduling problems. Future work
can explore further improvements to the model architecture, as well as investigate its application in
other real-world domains and more complex and constrained problem settings.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=rJXMpikCZ.

Vivek Vijayakumar, Fabio Sgarbossa, W Patrick Neumann, and Ahmad Sobhani. Framework for
incorporating human factors into production and logistics systems. International Journal of
Production Research, 60(2):402–419, 2022.

Zheyuan Wang and Matthew Gombolay. Learning scheduling policies for multi-robot coordination
with graph attention networks. IEEE Robotics and Automation Letters, 5(3):4509–4516, 2020.

Laurence A Wolsey and George L Nemhauser. Integer and combinatorial optimization, volume 55.
John Wiley & Sons, 1999.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks?, 2019.

Gal Yehuda, Moshe Gabel, and Assaf Schuster. It’s not what machines can learn, it’s what we cannot
teach. In International conference on machine learning, pages 10831–10841. PMLR, 2020.

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi. Learning to
dispatch for job shop scheduling via deep reinforcement learning. Advances in Neural Information
Processing Systems, 33:1621–1632, 2020.

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Chi Xu. Learning to search
for job shop scheduling via deep reinforcement learning, 2022.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI open, 1:57–81, 2020.

10

https://openreview.net/forum?id=rJXMpikCZ


Contents of the appendix

We describe the contents of the supplementary materials below:

• In Appendix A, we discuss the specific hyperparameters that were used for the training of
the models. We also describe some of the key statistics of the datasets.

• In Appendix B, we discuss additional experiments performed with the framework regarding
looking into the learned representation of the model.

A Experimental Details

For the experiments in Sec. 6, the hyperparameters described in Table 3 are used. Furthermore, the
most important statistics of the datasets are described in Table 4.

Table 3: Hyperparameters employed in the training process.
Name Value

Learning rate 0.001
Optimizer AdamW

Hidden layer size 16
Output layer size 8

Number of GEM layers (K) 3
Batch size 2048

Number of episodes 200
ϵ (epsilon-greedy) 0.10
γ (discount factor) 1.0
θ (soft update rate) 0.025

Replay memory size 106

α (PER) 0.6
β (PER) 0.4

Table 4: Key statistics about the datasets.
Dataset Name #Graphs Mean #jobs Mean #people Mean #job conflicts Mean #assignments Mean density

Planny 20 507.2 25.2 14344.5 5777.9 0.079
Erdős–Rényi 20 300.0 15.0 8998.5 2998.75 0.152

Barabási–Albert 20 300.0 15.0 1782.0 3137.65 0.081

B Additional Experiments with Learned Model Representations

Figure 6: Exploding loss over the
training of a GNN agent.

In order to gain insights into the results of the model after
training, we look at two figures. Fig. 6 shows that the loss
explodes during training. This is not surprising, as a reward
of 1 at every step can lead to instability over training as many
less terminal states are encountered. Since terminal states are
the only states where the model can observe that the reward
doesn’t just always happens, it is expected that the Q-values
can explode. In order to address this instability, Double Deep
Q-Learning and Prioritized Experience Replay (PER) were
utilized as described in Sec. 5. Resulting from the performance
of the model in Sec. 6, it can be concluded that the model was
still able to learn a good order of states with the learned Q-
values, even though they explode.

In order to confirm this idea, Fig. 7 plots the estimated Q-
values of a trained GNN divided by the maximum estimated
Q-value over one episode. Since the state graphs in the episode
should get smaller at each step, it is expected that the Q-values should decrease. From Fig. 7, it
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becomes apparent that the model does learn some decrease in these Q-values, although it does not
seem decreasing monotonically.

Figure 7: Maximum normalized estimated Q-values from a trained GNN agent over sequential
timesteps of an episode.
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