
Autonomous Lane Changing using Deep Reinforcement Learning with Graph
Neural Networks

Arvind S. Menon∗, Lars C.P.M. Quaedvlieg∗, Somesh Mehra∗

Machine Learning (CS-433), École Polytechnique Fédérale de Lausanne — Fall 2022

Abstract—This paper introduces an approach to autonomous
lane changing using deep reinforcement learning. By employing
graph neural networks and deep Q-learning, general size-
agnostic representations of the problem are learned. The agent
is trained in a simulated environment to control the lane
changing of a truck with a trailer. The final agent is able
to outperform a model-predictive controller in terms of the
number of crashes.

Keywords-Autonomous lane changing, deep Q-learning,
graph neural networks, model-predictive controller

I. INTRODUCTION

There are several methods that have been proposed for
automated lane changing in autonomous vehicles. One ap-
proach is to use a model-based controller, such as a Model
Predictive Controller (MPC) [1] or a Linear Quadratic Reg-
ulator (LQR) [2], which takes into account the dynamics
of the vehicle and the road environment. These controllers
typically rely on a mathematical model of the vehicle and
the surrounding traffic, and they optimize a predetermined
performance metric, such as fuel efficiency or relative ve-
locity to the speed limit, over a finite horizon.

However, model-based controllers can be sensitive to
model uncertainty and may not be able to adapt to changing
traffic conditions or unexpected behaviors of other road
users. As a result, machine learning techniques have been
explored as an alternative approach for automated lane
changing. These methods aim to learn a control policy
directly from data, without the need for explicit modeling
of the vehicle or the environment.

One type of machine learning approach that has been used
for lane changing is supervised learning, which involves
training a model to predict the appropriate control action
given a set of input features [3]. Supervised learning can be
effective when a large amount of labeled data is available,
but this availability is currently lacking.

More naturally, another type of machine learning ap-
proach that has been applied to lane changing is reinforce-
ment learning (RL), which is a framework designed for
stochastic sequential decision-making processes [4]. This ap-
proach has been extensively investigated [5], [6], [7], [8], [9].
The network architecture type for the model is key to solving
the problem, as it determines how the RL agent processes
and represents the information from the environment and
how it selects actions based on this representation. Recent

research employs convolutional neural networks (CNNs) as
the model architecture [5], [6].

In this paper, we propose a graph neural network (GNN)
architecture combined with RL and a model predictive con-
troller to solve the problem of autonomous lane changing.
There are several reasons why GNNs might be more suitable
than CNNs for this task. GNNs are better equipped to learn
the complex and dynamic relationships between vehicles,
rather than only considering local features or patterns. They
can also very naturally handle variable-sized inputs, which
is more suitable for the uncertain nature of the traffic
environment where scenes are constantly changing.

II. BACKGROUND

A. Preliminaries of Reinforcement Learning

Reinforcement learning (RL) is the problem faced by
an agent that must learn behavior through trial-and-error
interactions within an environment [4]. Fully observable
reinforcement learning environments can be formulated as
a Markov Decision Process (MDP). Formally, this is a
5-tuple (S,A,R,P, γ) [10], where R : S × A → R,
P : S × A × S → [0, 1], and γ ∈ R. Here, S and A are
the state and actions space of the agent, R is the reward
function, P is the transition probability function and γ is the
discount factor.

An RL agent is situated in a particular state s ∈ S, where
it has to take an action a ∈ A. Action selection is done using
the policy π(at|st) ∈ [0, 1], which denotes the probability
of taking action at given that the agent is in state st.

After taking action a in state s, the agent observes reward
Ra

s and ends up in state s′ with probability Pa
s,s′ . This form

of sequential decision-making is repeated until the agent
reaches a terminal state, after which the episode ends. There
also exist non-episodic environments where there are no
terminal states.

The return Gt =
∑∞

i=t γ
i−tRi is a discounted cumulative

sum of rewards Ri. γ ensures that rewards observed later
count exponentially less in the computation of the return
from time step t. State value vπ(st) = Eπ[Gt|S = st]
is the expected return when in state st under policy π.
Qπ(st, at) = Eπ[Gt|S = st, A = at] is the expected return
Gt when in state st and taking action at under policy π.

One of the most promising algorithms in RL is the Q-
learning algorithm [11], which uses equation (1) to smoothly



update Q(S,A) to the target value y with learning rate α.

yt = rt+1 + γmax
at+1

Q(st+1, at+1)

Q(st, at) = (1− α)Q(st, at) + αyt
(1)

B. Graph Neural Networks

GNN is a blanket term for any neural network that deals
with graph data. There exist various types of architectures
for different tasks. Some popular architectures include:

• Graph Convolutional Networks (GCN): GCNs apply
the concept of convolution to graph data. For each node,
we get the following forward pass (lthlayer):

h
(l)
i = σ(

∑
i∈Nj

cijWh
(l−1)
j )

where hi represents the node-embedding of the ith

node, σ is the activation function, W is the weight
matrix, and cij = 1√

NiNj

where Ni, Nj represent the

size of the node neighborhoods.

Figure 1: A Graph Attention Network (GAT) Layer

• Graph Attention Networks: GATs are similar to GCNs,
however instead of a fixed weight cij for each neigh-
bour, it uses αij as follows:

h
(l)
i = σ(

∑
i∈Nj

αijWh
(l−1)
j )

where αij represents individual weights for neighboring
nodes which are learned using the self-attention mech-
anism. The attention mechanism computes normalized
weight coefficients for each pair of nodes i and j based
on their feature vector representation,

αij = F(hi, hj)

The aim of the attention mechanism is to learn how
much weight (”attention”) should be given to each
neighbour node.

C. Deep Reinforcement Learning

y = r + γmax
a′

Q(s′, a′; θ−i )

Li(θi) = E(s,a,r,s′)∼U(D)

[
(y −Q(s, a; θi)

2
] (2)

Since it is often intractable to store all possible Q-
values, and in order to generalize better between similar

states, Q-learning was extended to function approximation
with deep neural networks. This algorithm, referred to as
deep Q-learning [12], uses gradient-based optimization with
∇θiLi(θi) from equation (2) to train the model. Here, θi
refers to the weights of the neural network architecture.
Due to the instability of RL with function approximation,
deep Q-learning proposes two additional changes to increase
stability:

1) Since learning on a trajectory (s0, a0, r0, s1, ..., sT )
violates the assumption of i.i.d. sampling, the pa-
per proposes creating an empirical distribution from
observed tuples (st, at, rt, st+1) called U(D) (the
experience replay buffer), which is sampled to update
the model.

2) The target y is frozen for a fixed number c of iterations
using historical weights of θ called θ−. After every c
iterations, θ− is updated to the most recent θ. This
reduces variance in the loss function since it does not
change to the most recent θ at every iteration.

This paper uses deep Q-learning to learn the weights of
an architecture that uses graph neural networks to build an
effective representation.

III. METHODOLOGY

A. Environment Representation

Figure 2: Example of a state of the highway driving scenario.
The truck is shown in cyan. The dots represent vehicle
targets, and the black dashed line in front of the truck is
the current trajectory that the truck follows.

The environment is represented by the Simulation of
Urban Mobility (SUMO) traffic simulator [13], [6]. A one-
way highway with three lanes was simulated, where the
controlled vehicle consisted of a truck-trailer combination,
as depicted in figure 2. More specific configurations of the
environment are discussed in section IV.

In this paper, we formulate this simulation as a fully-
observable environment. As discussed in section II-A, it is
formally defined as an MDP; a 5-tuple (S,A,R,P, γ).

• State space (S)
Every state in the state space is defined as a graph
G = (V, E , F ). Here, V = {v0, ...vn} is the set of
vehicles present in that state. v0 is the ego vehicle (in
this case the truck) and is present in every state. E
is the set of edges between vertices in the graph. An
undirected edge is present between two vehicles if they
are within a certain predefined distance from each other
(∆x < 10m, ∆y < 30m in our case). Self-connections
are also included. It is important to note that subgraphs



disconnected from v0 are not considered, since those do
not contain useful information for the truck. Finally, F
is the feature matrix, where each row Fi corresponds
to the features of vehicle vi:

[
∆xi,∆yi,

vi−vmax

vmax
, θi

]
.

These are the x- and y-distances relative to the ego
vehicle, the normalized difference with the maximum
velocity, and steering angle respectively. An example
of such a graph is displayed in figure 3.

Figure 3: Example of the representation of one state

• Action space (A)
In the simplest case, the agent is able to perform
three actions: A = {aL, aN , aR}, where these actions
represent left lane change, no lane change, and right
lane change respectively. If the agent is in the left or
rightmost lanes, the invalid actions are simply masked.
These actions are then executed by a trajectory planner,
which is discussed in more detail in section III-B.

• Reward function (R)
We want to encourage the ego vehicle to make lane
changes for two primary reasons: 1) for efficiency in
getting to its destination (i.e. maintaining a speed close
to the speed limit), and 2) for safety to avoid collisions.
As such, we assign the following reward structure:

r =

{
rv = v

vmax
normal drive

rc = crash penalty crash occured

Here, v is the speed of the truck and vmax is the speed
limit (60 km/h or 16.66 m/s in our case). We tested two
values for the crash penalty, rc = {0,−10}, to study
how this affects the agent’s learning.

• Transition probability distribution (P)
The transition model is defined by the previously
mentioned simulation software. Since the simulation
takes very small time steps (every 0.2s), the agent is
defined to only take an action every k steps. Hence,
the transition happens over an interval of k time units.
Within that interval, the trajectory planner represents
the action taken and is controlled in the simulation.

B. Agent Architecture

Figure 4a) shows the original controller workflow before
introducing the RL agent. In this setup, the MPC is respon-
sible for modeling the current state, calculating the cost

of each possible decision, and then executing the optimal
action. As shown in 4b), in our setup, whilst the actual
trajectory planning is still handled by the MPC, the RL
agent is responsible for deciding when to perform a lane
change. This has the additional benefit of saving time and
computation by the MPC controller since it only needs to
calculate the cost of one decision as opposed to three at each
iteration.

Figure 4: Controller workflow a) before and b) after intro-
ducing the RL agent.

Figure 5: Architecture of the GNN

For the RL agent, we use a GNN with the architecture
shown in figure 5. The network takes as input the current
state, s, in its graph representation, and first applies two
Graph Attention Network layers. Specifically, we use GATv2
layers, which are a more dynamic and better-performing
variant of the original GAT layer [14]. This allows neighbor-
ing vehicles to aggregate information from their neighbors,
and then propagate this information to the ego vehicle. After
this, we extract the feature embedding of the ego vehicle
and pass this through a fully connected neural network to
ultimately predict the Q values for each action.

Rather than always performing the action with the highest
Q-value, we also employed an ϵ-greedy exploration strategy



Crash penalty (rc) # episodes # crashes # derails avg distance (m) avg speed (m/s) avg decision time (s)
No RL agent (baseline) 30 1 2 420.9 15.0 0.084
0 30 2 4 377.5 14.4 0.030
-10 30 0 4 364.5 13.7 0.012

Table I: Comparison of different crash penalties vs using only the controller as a baseline. Each episode was run for 30s.

during training to avoid getting stuck in a poor local opti-
mum, as shown below.

at =

{
max Qt(a) with probability 1− ϵ

random action with probability ϵ

Additionally, after each learning step, we decay the value
of ϵ by subtracting a fixed decrement (ϵdec) until a minimum
value (ϵmin).

IV. SIMULATIONS AND RESULTS

Figure 6: Plot showing of average reward per episode (with
smoothing = 0.99) for crash rewards rc = {0, -10}

To train the networks, we simulated 50 episodes of 50s
each, invoking the RL agent for lane-changing decisions at
every 1s interval (k = 5) and rewarding the decisions with
the scheme described in section III-A.

The hyperparameters used for the training were: discount
factor γ = 0.9, target copy delay c = 5, epsilon ϵ = 0.1,
ϵdec = 1e−3, ϵmin = 0.01, a learning rate of 0.01, memory
buffer of 100,000 transitions, and batch size of 32.

Figure 7: Plot of the truck speed (m/s) vs speed limit (16.66
m/s) at each time step during training (with smoothing=0.4)

The results for the two crash penalties (rc = {0,−10})
we tested are shown in figure 6 and table I. In figure 6 we
observe lower reward values for rc = −10, which may be
due to lower velocity and the expensive crash penalty. This

is indicative of a more conservative approach to driving and
lane changes, whereas for rc = 0 we see higher reward
values indicating that the vehicle is able to maintain speeds
closer to the speed limit, as shown in figure 7.

This safety vs efficiency tradeoff is also present in table I,
where there are no crashes for rc = −10, suggesting that it
is possible to train a more safety-oriented agent by heavily
penalizing decisions that result in a crash.

Although the MPC makes almost-optimal decisions in the
relatively simple scenarios being simulated, the RL agents
still achieved comparable performance in terms of average
distance and speed achieved in each episode, whilst also
offering a significant speed up in average decision time.

V. DISCUSSION AND CONCLUSIONS

As outlined in [15], a major problem with deep Q-learning
is that models which use a traditional experience replay
mechanism tend to learn bias from imbalanced data.

We observed a strong bias towards certain actions (for
example, the rc = 0 model predicted 55% left change,
45% no change, and 0% right change decisions during
our simulation). This was likely because the proportion of
each decision in the replay buffer is highly sensitive to
the network parameter initialization. One way to counteract
this would be to use a more aggressive exploration policy
initially (using a higher ϵ), to increase the diversity of
decisions in the buffer. Another way is to use different
sampling methods like stratified sampling by decision, or
oversampling underrepresented decisions.

Alternatively, we could employ a curriculum learning
approach by providing the agent with a more controlled
learning environment. By selecting the tasks and the order in
which they are presented to the agent, it is possible to create
a learning path that helps the agent progress more efficiently
and avoid getting stuck in local minima [16]. However, one
downside is that it may limit the agent’s flexibility by only
selectively choosing training situations.

Nevertheless, in figure 6 we can see some evidence of
improvement in the rc = 0 model from episode 30 onward,
with the reward function on average trending upwards. Thus,
further training the model for more episodes could likely
improve performance, since the RL agent would encounter
new situations to learn from, and have more time to converge
to an optimum.

Overall, although there are many areas for improvement,
we have demonstrated the potential usage of deep RL with
GNNs for automating lane-changing decisions.



REFERENCES

[1] J. Suh, H. Chae, and K. Yi, “Stochastic model-predictive con-
trol for lane change decision of automated driving vehicles,”
IEEE Transactions on Vehicular Technology, vol. 67, no. 6,
pp. 4771–4782, 2018.

[2] H. Chae, Y. Jeong, S. Kim, H. Lee, J. Park, and K. Yi,
“Design and vehicle implementation of autonomous lane
change algorithm based on probabilistic prediction,” in 2018
21st International Conference on Intelligent Transportation
Systems (ITSC). IEEE, 2018, pp. 2845–2852.

[3] V. Mahajan, C. Katrakazas, and C. Antoniou, “Prediction of
lane-changing maneuvers with automatic labeling and deep
learning,” Transportation research record, vol. 2674, no. 7,
pp. 336–347, 2020.

[4] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforce-
ment learning: A survey,” Journal of artificial intelligence
research, vol. 4, pp. 237–285, 1996.

[5] C.-J. Hoel, K. Wolff, and L. Laine, “Automated speed and
lane change decision making using deep reinforcement learn-
ing,” in 2018 21st International Conference on Intelligent
Transportation Systems (ITSC). IEEE, 2018, pp. 2148–2155.

[6] ——, “Tactical decision-making in autonomous driving by
reinforcement learning with uncertainty estimation,” in 2020
IEEE Intelligent Vehicles Symposium (IV). IEEE, 2020, pp.
1563–1569.

[7] B. Mirchevska, C. Pek, M. Werling, M. Althoff, and
J. Boedecker, “High-level decision making for safe and rea-
sonable autonomous lane changing using reinforcement learn-
ing,” in 2018 21st International Conference on Intelligent
Transportation Systems (ITSC). IEEE, 2018, pp. 2156–2162.

[8] H. Krasowski, X. Wang, and M. Althoff, “Safe reinforce-
ment learning for autonomous lane changing using set-based
prediction,” in 2020 IEEE 23rd International Conference on
Intelligent Transportation Systems (ITSC). IEEE, 2020, pp.
1–7.

[9] P. Wang, C.-Y. Chan, and A. de La Fortelle, “A reinforce-
ment learning based approach for automated lane change
maneuvers,” in 2018 IEEE Intelligent Vehicles Symposium
(IV). IEEE, 2018, pp. 1379–1384.

[10] M. L. Puterman, Markov decision processes: discrete stochas-
tic dynamic programming. John Wiley & Sons, 2014.

[11] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning,
vol. 8, no. 3, pp. 279–292, 1992.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski et al., “Human-level control through deep rein-
forcement learning,” nature, vol. 518, no. 7540, pp. 529–533,
2015.

[13] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P.
Flötteröd, R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and
E. Wießner, “Microscopic traffic simulation using sumo,” in
2018 21st international conference on intelligent transporta-
tion systems (ITSC). IEEE, 2018, pp. 2575–2582.

[14] S. Brody, U. Alon, and E. Yahav, “How attentive
are graph attention networks?” 2021. [Online]. Available:
https://arxiv.org/abs/2105.14491

[15] W. Yuan, Y. Li, H. Zhuang, C. Wang, and M. Yang, “Pri-
oritized experience replay-based deep q learning: Multiple-
reward architecture for highway driving decision making,”
IEEE Robotics & Automation Magazine, vol. 28, no. 4, pp.
21–31, 2021.

[16] S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Tay-
lor, and P. Stone, “Curriculum learning for reinforcement
learning domains: A framework and survey,” arXiv preprint
arXiv:2003.04960, 2020.

* All authors contributed equally to this work

https://arxiv.org/abs/2105.14491

	Introduction
	Background
	Preliminaries of Reinforcement Learning
	Graph Neural Networks
	Deep Reinforcement Learning

	Methodology
	Environment Representation
	Agent Architecture

	Simulations and Results
	Discussion and Conclusions
	References

