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Abstract—This paper studies different machine learning
models applied to the data collected from the experiments
performed with the CERN particle accelerator with the aim
of discovering the Higgs boson particle. The logistic regression
using Accelerated Gradient Descent with Restart (AGDR) was
found to perform the best, achieving a categorical accuracy of
0.819 and F1-score of 0.729 in the benchmark.

I. INTRODUCTION

The Higgs boson is an elementary particle in the Standard
Model of particle physics which explains why other particles
have mass [1]. It can appear momentarily after particles are
collided with each other at high velocities. The boson cannot
be observed directly as it decays rapidly into other particles.
Thus, its presence must be inferred from its decay signature
that result from its decay process.

This paper aspires to estimate the likelihood of a collision
producing a Higgs boson given a vector of features that
represents the decay signature of a collision event. This
paper utilizes different machine learning models for binary
classification. The models are trained and tested with CERN

particle accelerator data from [2].
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II. METHODOLOGY
A. Data pre-processing and feature engineering

Two data sets: the testing set and the training set, are used
for this experiment. The training set consists of 250,000
labeled data points and the test set of around 570,000
unlabeled data points, where each data point is the measure-
ment data from a single particle collision experiment. This
data contains 30 features from which 17 are raw quantities
(primitives) from the collision measured by the detector and
the 13 other (derived) features are quantities derived from
the primitive features. Additionally, the training set contains
binary labels. The signal label ’s’ denotes the presence of a
Higgs boson and the background label °b’ its absence in an
experiment. From the training data, around 34% are signals.

The first steps of this paper establish data pre-processing
and feature expansion. During these steps, the data is filtered,
normalized and new features are added.

One feature of the data point, ”PRI jet num”, is categor-
ical, and and it affects many other feature values [2]. The
categorical variable and the affected variables are augmented
into multiple variables, which contain the corresponding

one-hot-encoded values of the initial variable. This way, the
applied models can construct multiple weights correspond-
ing to the values of the categorical variable.

As mentioned by Adam-Bourdarios et al. [2]], the data set
contained undefined values which were marked as having
value —999.0. To prevent the missing values from affecting
the normalization of the data, these values were set to the
Python NaN, denoting a missing number. Afterwards, the
data was normalized to have zero mean and unit variance. Fi-
nally, the missing values were set to zero which corresponds
to the empirical means of the features after standardization.
This normalization was applied to all columns except the
one-hot-encoded feature columns.

After standardizing the features, the absolute value of the
Pearson correlation coefficients between each feature pair
is computed. Table [I| shows the number of feature pairs that
have at least a certain correlation. This minimum correlation
will be referred to as “correlation cutoff threshold” later in
the paper.

Minimum correlation 0.8 06 | 04| 02 0.0
Number of feature pairs | 40 | 51 91 137 | 561

Table I: The number of feature pairs given a certain mini-
mum correlation for each pair

This paper experiments with adding a differing amount
of interaction terms of certain features (including the fea-
ture with itself) to create a simple but powerful degree 2
polynomial basis for the model. This basis allows the model
to fit the data better and circumvent underfitting. To avoid
overfitting or producing multicollinear features, it is ensured
that the model performs well in both the training set and the
test set.

B. Models

Multiple approaches are implemented and benchmarked
in this paper. Initially, linear regression is employed and
performed using the linear least squares approach (LS) for
approximating the solution to the linear equations. Then,
ridge regression is used and tested to apply regularization to
the linear regression. Finally, (regularized) logistic regres-
sion is implemented with two optimizers: gradient descent
(GD), and a custom algorithm called accelerated gradient
descent with restart (AGDR). The latter algorithm uses
momentum to help the weights convergence more quickly
[3], and resets its momentum when it appears to be going



in a direction that does not optimize the loss function [4].
The loss function for logistic regression is adapted in order
to avoid numerical instability by adding a sufficiently small
constant ¢ = 10~8 inside the logarithm terms. It is important
to note that all optimization problems mentioned above are
(strongly) convex and smooth, meaning the optimization is
guaranteed to converge to a global minimum.

III. EXPERIMENTS AND RESULTS

The first experiment performed is a benchmark between
the algorithms that were mentioned in section [[I-B] The
tests are performed by splitting the labeled data into two
sets: one used for training the model, and the other used for
measuring the models performance. This test is performed
ten times for each model. The error margins are calculated
from the test results by calculating the greatest absolute
deviation from the mean of the experiments. The test results
are shown in Table [lIl Additionally, 4-fold cross-validation
was performed for the regularized logistic regression and
ridge regression for selecting the optimal regularization
coefficients (\), where it was noted that the regularization
did not improve the models’ performance.

The following models were used in this benchmark:

Model A Always choose background label (ZeroR) (baseline)
Model B Linear regression (LS)

Model C Ridge regression (LS)

Model D Logistic regression (GD, A = 0)

Model E Logistic regression + interaction terms (AGDR, A = 0)
Model F Logistic regression + interaction terms (AGDR, A =

107°)
Model | Test Accuracy Test F1-Score
A 0.658 £ 0.003 | 0.000 +£ 0.000
B 0.798 £0.002 | 0.682 £ 0.005
C 0.798 £0.002 | 0.682 £ 0.005
D 0.726 £ 0.003 | 0.453 & 0.006
E 0.819 £ 0.002 | 0.729 £ 0.006
F 0.800 £ 0.003 | 0.645 £ 0.005

Table II: Accuracy benchmark with different models on a
testing dataset with 50,000 samples

As can be seen in table the best model in terms of
both accuracy and Fl-score uses logistic regression with
interaction terms and is optimized using AGDR.
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The previous figure shows that when adding more inter-
action terms, the test error still decreases. This indicates that
the model is not overfitting, although the relevancy of the
features seems to be decreasing. Hence, all interaction terms
are added to the final model. Further, figure [Tb] shows that
AGDR converges much faster than regular gradlent descent.
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The figures above show that, for logistic regression, the
best classification threshold in terms of accuracy and Fl1-
score on the test dataset lies around 0.5, with little variation
in performance close to 0.5. However, this still means that

the model favors choosing one class over the other.
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The ROC curve in figure [3a] shows that there is no large
variation in TPR versus FPR for thresholds around 0.4.
Furthermore, after fixing the threshold to equal 0.5, figure [3b]
displays that positive samples are more often misclassified
than negative samples on the test dataset.

IV. DISCUSSION AND CONCLUSIONS

This paper performed regression analysis to the task of
Higgs boson detection from the Large Hadron Collider
proton collision data. Multiple regression models were con-
sidered from which the logistic regression using Acceler-
ated Gradient Descent with Restart (AGDR) was found to
perform the best. The model achieved categorical accuracy
of 0.819 and Fl-score of 0.729 in the test set used for
benchmarking. Furthermore, the importance of adding more
complex features to address underfitting, in our case by
adding interaction terms of features, is highlighted in the
experiments.

One interesting idea for further research would be to
look into higher-order polynomial terms while preserving
memory usage.
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