REINFORCEMENT LEARNING IN THE GAME OF RISK

Reinforcement Learning in the Game of RISK

Lars Quaedvlieg
Ramon Reszat
Joan Botzev
Daniel Roder
Michael Balzer
Sree Kotala

LCPM.QUAEDVLIEGQSTUDENT.MAASTRICHTUNIVERSITY.NL

R.RESZAT@QSTUDENT.MAASTRICHTUNIVERSITY.NL
J.BOTZEVQSTUDENT.MAASTRICHTUNIVERSITY.NL

DANIEL.RODER@QSTUDENT.MAASTRICHTUNIVERSITY.NL

M.BALZER@QSTUDENT.MAASTRICHTUNIVERSITY.NL
S.KOTALA@QSTUDENT.MAASTRICHTUNIVERSITY.NL

Department of Data Science and Knowledge Engineering, Maastricht University

Abstract

In this paper artificially intelligent players have been developed capable of playing the game of RISK.
Multiple algorithms have been implemented using Temporal-Difference and Q-Learning. Both of these
algorithms have been trained by self-play. This study serves as a comparison between linear and non-
linear evaluation functions. In the final experiments the non-linear approach performed better than
both the random baseline as well as the linear function with the selected weights.

Keywords:

1. Introduction

The field of Reinforcement Learning and games
have gone a long way together. On the one hand,
games allow for many meaningful testing appli-
cations in the field of Reinforcement Learning [1].
On the other hand, games can make use of these al-
gorithms to improve the overall experience of play-
ers.

Multiple aspects of the games can differ, in-
cluding but not limited to the environment and
transitions within it, actions and the goal of the
game. RISK is considered difficult to master in
that sense. This is due to partially observable
environments, stochastic state transitions and the
game being multi-player. It has an infinite state-
space complexity and a game-tree complexity from
102350 to 105945 [2}

RISK is a strategy game; The goal is to own
all countries in the world by defeating opponents.
The game, which can be played with 2 to 6 players,
consists of two game phases which will be referred
to as the distribution phase and the battle phase.
In the distribution phase, players will choose on
which countries to initially place their troops until
they have no more to place. Then, the battle phase
starts. Each turn in the battle phase consists of
three sub-phases. These are called the placement,

RISK, Temporal Difference Learning, Deep Q-Learning, Self-Play, Linearity

attack and fortifying phases. They are consecu-
tively meant for placing new troops, attempting
to invade other countries and moving troops be-
tween countries.

RISK is a niche game for benchmarking rein-
forcement learning algorithms. However its prob-
abilistic elements have been evaluated in detail in
papers such as [3] and [4]. Furthermore heuristic
strategies have been proposed by [5] and [6] to con-
struct valuable features that describe the current
state of the game board.

The goal of this paper is to argue whether it is
possible to implement a bot that can play the game
of Risk. Furthermore, it is interesting to compare
the performance of linear versus non-linear func-
tion approximators for (action-)value function ap-
proximation.

This paper extends the idea of using temporal-
difference learning [7] with Q-Learning to find an
approximation of the optimal policy in the game
of RISK.

In section 3.1 features that describe the state
of the game are discussed, heuristic algorithms
for the distribution- and placement phase are pro-
posed and finally the Reinforcement Learning ap-
proaches for the battle phase will be considered.
Finally, experiments will be performed and the re-
sults will be discussed.

REINFORCEMENT LEARNING IN RISK

2. Graphical User Interface

The Ul is built using JavaFX and CSS. The GUI
consists of main menu, rules page, player selection
screen with 6 options, pause menu and the actual
game map itself. The game map consists of SVGs
and coupled with in-game features provide a de-
lightful user experience to aid in playing the game.
These are discussed in more detail at appendix A.

Figure 1: RISK board-map with 6 players, showcases
the SVG paths and features described.

3. Methods

3.1 Features

Both bots use five distinct game features to deter-
mine the value of each state. These features are
heavily influenced by the papers of [5] and [6]. The
features chosen are the following:

e Armies feature: Proportion of army
strength in comparison to all other armies
on the board.

e Territories feature: Proportion of territo-
ries controlled by the player

¢ Enemy Reinforcement feature: Sum of
expected reinforcement of enemy players

e Best Enemy feature: Negative strength
measure for the strongest enemy player

e Hinterland feature: Proportion of coun-
tries owned that are not adjacent to enemy
countries

3.2 Heuristic Algorithms

Three heuristic algorithms have been imple-
mented. One for the distribution phase, one for
the placement phase and one for the fortifying

phase. All algorithms depend on the difference
in troops between each country and its attacking
neighbors. The heuristic algorithm for the fortify-
ing phase is based on the idea of reinforcing those
borders with the highest presence of enemy troops.
For the distribution heuristic, a table is created
with priorities based on the number of players.
The table can be found back in the appendix 11.

3.3 Temporal Difference Learning

Temporal Difference Learning (T'D())) has been
chosen as one of the bots in order to not having
to rely on given data sets [8]. Since TD-Learning
relies on the difference between the current esti-
mate of a state value and its actual state value for
a given state, predefined data can be replaced by
some sort of evaluation function, hence the name
“Temporal Difference”. For the specific environ-
ment of the implanted RISK board game, the eval-
uation function has been chosen to be linear, in
order to use the Temporal Difference formulae to
evaluate a given state based on its features. For
the approach of this paper, a feature space of five
distinct features, mentioned above, has been cho-
sen. The Temporal Difference bot will only engage
in an actual attack phase, the rest is solved by
heuristics described in 2.2. The features are col-
lected in a linear function, presented by Sutton.|[7]

t
Wi 1 = Wi Fax (F(mt+1)—F(mt)) XZ)\t_kfi(:vk)
k=1

1)

The formula seen above is used during the TD-
Learning approach to adjust the weights inside
the linear function to evaluate future states based
on predicted features. The calculation involves
subtracting the current state value from an esti-
mated future state. This is then multiplied with
the sum of all values a specific feature took in the
past steps, multiplied by a regularization factor A,
taken to the power ¢t — k, where t — k counts the
rounds that were taken up to time ¢, backwards.
The distinct feature is the one matching to the
weight that is to be updated. The resulting prod-
uct is multiplied with a learning parameter alpha
and added to the current weight. This step is exe-
cuted for all weights simultaneously to ensure that
all states are calculated with most recent weights.

REINFORCEMENT LEARNING IN THE GAME OF RISK

In this iteration of the TD-Bot, it has been de-
cided to update the weights of the linear evalua-
tion function after each attack move allowing for a
faster learning experience while on the other hand
risking inhomogeneous learning steps. [5]

3.3.1 FINDING THE FUTURE STATE VALUE

In the Battle phase each attack independent of
its outcome will lead the agent to a new state
therefore implying a new calculation of the state
value. Depending on the current board situation
the agent might encounter a large number of possi-
ble attack moves. To decide which of these moves
or rather which of the state values resulting from
these moves F(x¢y1) shall be used for the TD-
learning algorithm we introduced a method which
allows the agent to estimate the future state values
for all its possible attack moves of which he will
subsequently choose the one with the highest ex-
pected state value. These values are calculated by
estimates like the expected troop loss and result in
a simulated state value which is in turn weighted
by the estimated win-chance.

3.3.2 DECIDING TO ATTACK

While the previously mentioned method allows the
TD-Bot to choose an attack target it lacks the
ability of actually allowing to let the bot decide
whether to attack or not. For this reason an ad-
ditional heuristic which decides based on the win
chance if the bot should start an attack or not was
introduced. For this reason two hyper- parame-
ters where introduced which allow manual adjust-
ments to the threshold set for the win chance and a
hyper-parameter defining the probability that the
bot will deviate from this threshold and engage in
a less favorable fight.

3.3.3 NORMALIZATION

The results suggest a similar behaviour of the TD-
Algorithm as was indicated by [5]. Thus games
with a large number of steps tend to reach a point
where the weights suddenly jump resulting in an
ever rising state value. This effect is amplified by
the fact that in the current iteration the bot learns
after each attack move. To counteract this prob-

lem the following normalization method is intro-
duced, also indicated by [5].

Sh A TR f(ay)
[IF @)l X | 32h—q AR f ()]
(2)

wi 1 = wip+ax (F(zipr)— F(zy)) X

Here f(x¢) is the vector of all features for the
current state. Therefore the denominator is based
on the values of all features while the numera-
tor is only based on the feature corresponding to
the weight that is currently updated. Furthermore
||z|| is used to denote the euclidean norm. As it
can be seen by graphs in the appendix (C), nor-
malized weights will prevent a divergence of said
values, such that their impact will be kept mod-
erate over the course of the training which would
otherwise lead to massively increasing and decreas-
ing state values.

3.4 Deep Reinforcement Learning

Deep Reinforcement Learning is a natural addi-
tion to Temporal Difference learning, which uses
a non-linear evaluation function to approximate
state-action (@) values. The task involves tak-
ing a binary attack decision that maximizes the
expected future rewards. Hence the RISK bot is
choosing actions in the battle phase that increase
the number of countries owned by it while avoid-
ing loosing troops over the course of the game to
eventually achieve its goal of winning.

3.4.1 DEEP Q-NETWORK

We estimate the discounted action-state wval-
ues and the expected future reward Ryi1 +
ymax, Q(Si11,a’) of the state after taking an ac-
tion using a multi-layered deep Q network [9].

3.4.2 DEEP Q-LEARNING

Stochastic gradient descent is not good for sin-
gle samples in online training. Thus using non-
linear approximation for the Q-values will almost
never converge. Deep Q-Learning aims to address
this. In order to make policy iteration more sta-
ble, two improvements have been made. These
go by the names of Ezxperience Replay [10] and
Fized Q-Targets, as proposed in [9]. As said be-
fore, standard Q-Learning uses experience it ob-
tains only once. This is a waste, since re-iterating

REINFORCEMENT LEARNING IN RISK

over this experience might stabilize the policy eval-
uation process. The idea of experience replay is
to re-use previous experience. At each time-step
t, the information S;, Ay, Ry+1, Si11 is stored in re-
play experience D. This can later be sampled from
to re-iterate over previous experience. The loss
function at iteration ¢ which aims to be minimized
becomes

Liwi) =By o v [+ ymax Qs a0l - Qs aiw)?| @

This can be done using stochastic gradient de-
scent on the constantly re-sampled mini-batches
from D. The idea behind fixed Q-targets is to save
old network weights w,;” for a number of n steps.
This means that for these n steps, the network is
updated towards the Q-target of the old network.
This also stabilizes training, since the network is
not being changed after every turn. After n steps,
the parameters w; of this target network are over-
written with the current parameters w;. The algo-
rithm that was used by us can be found at B.2.1.
Rewards are determined in the following manner:
For every country the bot takes over, a reward of
R?, = 2 is accumulated. However, for every troop
lost, a reward of R?, = —1 gets added to the cu-
mulative reward.

4. Experiments
4.1 Abstractions

This paper assumes certain abstractions and sim-
plifications to the RISK game environment.

One simplification used in the approach of this pa-
per is limiting the amount of troops to be stationed
in one country to 10. This is done to keep the bot
from placing all its troops into a single country,
as this could provoke unwanted behaviour such as
the bot focusing on keeping one of its owned coun-
tries alive. This would lead to an endless game of
reinforcing one country and making it unbeatable,
thus, preserving a fixed status within the game.

4.2 Setup Experiment

The experiments regarding the TD-learning algo-
rithm focus on tuning the hyper-parameters. For
this reason, four separate experiments were con-
ducted each assessing the impact of increments

on one hyper-parameter. For each experiment,
the hyper-parameters were incremented from zero
to one in a series of twenty steps. In a 1 ver-
sus 1 game, one bot was adjusted to use the in-
cremented value while the second one kept using
standard values. To account for the probabilis-
tic nature of RISK, 500 games per increment were
played and the results of each increment were av-
eraged. Each graphic depicts the relation between
the incremented hyper-parameter and the average
number of turns needed for the adjusted bot to
win (Turns to win) and the average percentage of
games won for each increment.

4.2.1 ALPHA

Two major peaks in the Win Rate at alpha val-
ues of 0.2 and 0.6, they coincide with relatively
low "Turns to Win’ values which suggests that the
optimum alpha value lies at either of these points.

Turns to Win - —Win Rate

Turns to Win
Win Rate

Alpha

Figure 2: Win Rate and Turns to Win as Alpha

Changes

As the alpha values of 0.2 and 0.6 both have
the same "Win Rate’, the 'Turns to Win’ values
that is used to decide that an alpha value of 0.6
is optimal due to a high peak and low bar of all
the potential candidates. Although 0.6 seems to
be a high alpha value with a risk of overshooting
the optimum, this high value allows for the bot to
converge to an optimum quick enough to dominate
the game.

4.2.2 LAMBDA

Peaks are observed at lambda values of 0.25, 0.45
and 0.85. Observing their "Turns to Win’ helps to
determine which value to classify as optimal.

REINFORCEMENT LEARNING IN THE GAME OF RISK

Turns to Win
Win Rate

: | , ‘ |
1 Il,.lml-pllluﬁ,ll}gllll

Lambda

Figure 3: Win Rate and Turns to Win as Lambda
Changes

From the figure above, it can be seen that the
peak for lambda at 0.45 is most desirable, although
the peak at 0.25 has an equal "Win Rate’, the
"Turns to Win’ at lambda = 0.45 is significantly
lower compared to lambda = 0.25. The lambda
of 0.45 suggests that the bot does perform bet-
ter when taking into consideration that previous
states affect a future state. However, the value
may not be higher due to the stochastic nature of
Risk. Valuing intermediate states too much could
be punished by bad ’dice rolls’.

4.2.3 WIN-CHANCE THRESHOLD

The win-chance threshold is used to determine
whether the bot should start an attack against an
adjacent country. A higher value therefore indi-
cates a more defensive play-style, as the bot will
only attack if the predicted win-chance is above
the threshold.

Turns to Win (Bar)
Win Rate (Line)

Win Chance Threshold

Turns to Win —Win Rate

Figure 4: Win Rate and Turns to Win as Win Chance
Threshold Changes

Based on these results a more defensive strat-
egy, i.e. first collecting troops in conquered terri-
tories and attacking only when the predicted win-
chance is high enough, seems to yield a higher over-

all win rate while also resulting in a lower number
of turns needed to win. A value of 0.6 - 0.65 seems
optimal as it results in a win-rate close to 1, while
keeping the turns needed to win fairly low. Values
above 0.65 show more fluctuation which could be
due to the random-chance threshold, which also
helps in deciding whether to start an attack. In
general lower values for the win-chance threshold
seem to result in a lower win-rate in conjunction
with a higher number of turns needed to win. This
could be explained by the bot starting a lot of risky
attacks early and conquering additional territories
which he is then not able to protect later on.

4.2.4 RANDOM-CHANCE THRESHOLD

Another parameter created for a RISK playing bot
specifically in this paper is the Random-Chance
threshold. This threshold was designed to intro-
duce the tendency of the bot to take a rather
risky and not well evaluated move in the turn for
the case that the bot cannot find any desirable
state based on observations made about the Win-
Chance threshold. An increase in the Random-
Chance threshold equals an increase in the bots
willingness to take on an attack despite knowing
that the chance of winning the according battle is
low compared to the Win-Chance threshold.

Turns to Win
Win Rate

Y |
“Hulhll“m

Random Chance Threshold
mturnsuntilwin —win

Figure 5: Win Rate and Turns to Win as Random
Chance Threshold Changes

As can be seen in the figure above, with
the current standard values for the other hyper-
parameters, it seems that the bot achieves a high-
est win-chance when setting the Random-Chance
threshold to 0.45 or 0.55. It can be assumed that
this is the margin within which the experiment bot
plays as best opponent against the standard bot as

REINFORCEMENT LEARNING IN RISK

in any other case, the bot takes too much or not
enough risk to attack its opponent, resulting in
taking more turns or not winning a lot of games
overall.

4.3 Deep-Q Learning Approach

The main goals of a Q-Bot is to minimize the num-
ber of troops lost in battle while maximizing the
amount of controlled territory. Executing well in
that regard also results in an increased number of
bonus troops at the distribution phase of the fol-
lowing turn.

4.3.1 SELF-PLAY TRAINING PROCEDURE

The loss, as defined at (3), must be minimized
by the network. Instead of using the simple fea-
tures, this experiment makes use of the features
described in 3.1.

16

14

V] 200 400 600] 1000 1200

Game number

Figure 6: Loss over episodes of training

It can be observed that the average loss con-
verges as the number of episodes increase. An av-
erage is calculated every 25 games.

4.3.2 SIMPLE ATTACK PoLicy

Two approaches for describing a state were im-
plemented. The first one, which will be referred
to as simple features, describe a state as a 2-tuple
(a,b). Here, a is the number of troops in the coun-
try to attack from and b for the country to attack
to. The intuition was that by giving it different
reward signals, it can decide on a decision rule for
attacking.

Decision surface, game 0

[y
=

Light means no attack,
Dark blue means attack

B W & A h = O WD
#troops attacking country

12 3 4 5 6 7 8 910
#troops defending country

0-0.2 m0.2-04 m04-06 m06-08 m0B8-1

Figure 7: Initial policy of the DQN

Decision surface, game 10000

[
L]

Light means no attack,
Dark blue means attack
#troops attacking country

B W s LA h =] 00 WD

1 2 3 4 5 6 7 & 9 10
#troops defending country

0-0.2 m0.2-04 m04-06 w0608 mO0OE-1
Figure 8: Converged DQN policy

Starting with initial decision space as depicted
in Figure 7, control is performed using Deep Q-
Learning. After 10000 games, the policy in Figure
8 is obtained.

4.3.3 WINNING PLAYER IN SELF-PLAY

To track the progress made towards winning the
game, the number of troops available for each
player after the end of every turn for all games
played during the training procedure is collected.

REINFORCEMENT LEARNING IN THE GAME OF RISK

Player Presence

game=100
90 100
— QBot0
80 4 QBot 1

game=250

801

60 1

Troops

40 40

20 1 201

0
2 3 6 8 2 4 6 8 10
Turns Turns

game=500 game=1000

140

120 4

100

80

Troops

60 1

Turns Turns

Figure 9: Number of troops in Self-Play

From the sample games displayed in Figure 9
we see that it is common for one of the Q-bots to
dominate the game after 8 to 12 turns. Further it
can be observed that for self-play as soon as a sig-
nificant difference in the army strengths is reached,
the player with the highest presence prevails and
wins the game eventually.

4.4 Comparison of the methods

In order to compare the bots to a certain standard,
a random bot was implemented. This bot makes
random moves in the attack phase. However, in all
other phases, it behaves exactly like other bots.

Bot comparison

& 8OO0 BpEl 2685 RE4S
= o0
] TEB4
E 6000
5
5 5000 580
5 4000
3 0 ap11
g 3000
2 2000 2715
1000 i 1885 18855
o
1 2 3 4 5
m Simple DON Random D DaN

Figure 10: Comparison of the different bots

This way it is possible measure performance of
attacking algorithms on a large number of games.
In this experiment, each pair was trained for 10000

games. This largely reduces the variance. Simple
Q-learning is the overall winner, defeating every
other bot. Using the normal features for the DQN
comes close, but fails to win the most games for
the pair. The Temporal-Difference bot wins less
than 30% of its games against the random bot.

5. Discussion

Multiple approaches were implemented in order to
create a bot that can play the game of Risk. These
approaches both made use of Temporal-Difference
learning. The first aim of this research was to find
out whether it is possible to create a bot which has
the ability to play the game of Risk with reason-
able performance.

For the Deep Q-Learning approach, using sim-
ple features to describe the state space resulted in
a well-performing bot already. After training, it
was able to defeat a random playing bot and TD-
bot around 87% of the time. In a game like Risk,
this is an excellent performance. As seen in figure
9, the player that creates the higher presence will
eventually win the game. Since the game is very
stochastic, there are some cases where the random
player obtains this presence and will thus win the
game.

The same idea holds for the approach when us-
ing more complex features (as described in section
3.1). However, there is something interesting to
notice here. The complex features do not perform
nearly as well as the simple features. There could
be many causes for this. It is suspected that using
a deep neural network with the simple features al-
ready creates a complex decision space. The more
complex features may not represent the state as
well as this space.

For the TD-Learning algorithm, we have shown
that tuning certain hyper-parameters does have
a significant influence on the resulting play-style
of the bot. From these results, a more defen-
sive approach seems to yield higher win-chances
while keeping the number of turns needed fairly
low. Looking at the results from the comparison
experiment from section 4.4 we see a distinct dif-
ference when comparing the achieved win-chance
to those achieved during self-play. While a high
fluctuation in win-percentages could also be ob-
served during the hyper-parameter tuning experi-

REINFORCEMENT LEARNING IN RISK

ments the results from the comparison experiment
seem to suggest a far worse performance. Part of
the reason for this drop in performance could be
the use of unoptimized hyper-parameters as the
default values were used to represent a baseline for
the TD-Algorithm. In addition, the TD-bot seems
to follow a more defensive strategy overall. Here
he first builds up significant army strength in its
territories and then tries to win with large attacks.
The random bot could intervene with the TD-bot’s
ability to build up his army strength in the first
place by attacking early therefore not allowing the
TD-bot to fully prepare its strategy resulting in a
worse performance.

There are many ways in which these current
approaches can be improved. Right now, a model-
free approach has been used. This means the bot
does not make use of knowledge about the game
dynamics and rules. Implementing a simulation-
based planning algorithm like Temporal-Difference
Search for planning could increase performance
drastically.

Alternatively, the bot could learn a model of
the game; for instance by generating the maximum
likelihood Markov model based on observed expe-
rience. These ideas can all be combined together
to presumably improve performance.

The current algorithms can also be extended
to handle the other remaining phases of the game.
Then, reward can be tuned for the whole game,
instead of just the battle phase.

6. Conclusion

It was shown that using Q-Learning with a simple
multi-layered neural network [10], it is possible to
extract a policy based on the win chances [4] of
the battle phase, which is suitable to win games
against a human player. Using simple features to
describe the state space already results in a high
performance against other approaches.

When comparing linear function approxima-
tions against non-linear ones, it can be noted that
non-linear performs a lot better. This is due to the
more complex decision space it can create. This
leads to a powerful combination of the features,
which has more flexibility.

TD-Lambda learning has shown to be a sta-
ble and slow pace bot that focuses on maintaining

an optimum state for as long as possible, rather
than playing with the game dynamics. This is due
to the ” Temporal Difference” and the linear eval-
uation function used, giving the bot only limited
possibility to predict future outcomes and situa-
tions the bot might find itself in. This, combined
with the less complex approximation of states due
to the linear evaluation function gives the bot a
less detailed understanding of the game, making
it easier for human players or more advanced bots
to out-think strategies used in simple TD-Lambda
and leverage that predictability to win against the
TD-bot rather easily. However, the slow pace
strategies of Temporal Difference, mostly involv-
ing just building up a high troop count in owned
territories and thus increasing the chance for an
eventual attack to be successful, still makes the
bot one possible solution to counter the problem
of letting an Al master the game of RISK and win
a reasonable amount of games.

REINFORCEMENT LEARNING IN THE GAME OF RISK

References
[1] M. Wiering and M. Van Otterlo, Reinforcement learning, vol. 12. Springer, 2012.
[2] H. J. Van Den Herik, J. W. Uiterwijk, and J. Van Rijswijck, “Games solved: Now and in the
future,” Artificial Intelligence, vol. 134, no. 1-2, pp. 277-311, 2002.
[3] B. Tan, “Markov chains and the risk board game,” Mathematics Magazine, vol. 70, 12 1997.
[4] J. A. Osborne, “Markov chains for the risk board game revisited,” Mathematics Magazine, vol. 76,
no. 2, pp. 129-135, 2003.
[5] M. Wolf, “An intelligent artificial player for the game of risk,” Unpublished doctoral dissertation),
2005.
[6] F.Hahn, “Evaluating heuristics in the game risk an aritifical intelligence perspective,” Unpublished
doctoral dissertation), 2010.
[7] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Machine learning,
vol. 3, no. 1, pp. 9-44, 1988.
[8] J. Fiirnkranz, “Machine learning in games: A survey,” Machines that learn to play games, pp. 11—
59, 2001.
[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A. Riedmiller,
“Playing atari with deep reinforcement learning,” CoRR, vol. abs/1312.5602, 2013.
[10] L.-J. Lin, “Reinforcement learning for robots using neural networks,” tech. rep., Carnegie-Mellon
Univ Pittsburgh PA School of Computer Science, 1993.
[11] U. BoardGames, “The standard continents of risk,” 2020.

REINFORCEMENT LEARNING IN RISK

Appendix A. GUI Details

A.1 In-Game Features

The game is presented as a world map consisting of SVGs representing each country. For more intuitive
user interaction we have added labels indicating the number of troops placed in each country. Moreover
on each player’s turn we have a colored flag indicator showing the current player, a number of troops
in inventory notification as well as text about the current phase of the game: distribution; placement;
attack; fortify; win. A more concrete text indicating what is now required of the player is displayed
at the bottom of the game window. To provide a more intuitive nature for human versus bot games,
we have included a screen that displays the land(s) a bot has conquered after each turn the bot has
played; so that the user can follow along with how the bot is playing with more ease. Finally the
implementation of a skip button allows the user to fast forward the AI’s turn and a conquer screen
indicates after the turn which countries have been conquered by that Al.

A.2 SVG

The use of SVGs was chosen due to their versatility. We are able to scale the SVGs relative to
the display that the game is being shown on. Other features such as the colours changing to the
players colour when they become the owner of it; either by distributing troops or conquering in the
activate phases. As the country being hovered over is also brought forward and make slightly larger, in
addition, a shadow is cast on the country to draw the users attention to it. The colours available are
all specifically chosen to be contrasting and vivid to draw interest from users of all ages, a secondary
benefit is that it more clearly indicates a territory’s owner.

Appendix B. Tabular information

B.1 Distribution Priorities

Player count Priority 1 2 3 4) 6
2 North America Australia South America Africa Europe | Asia
3 Australia North America | South America Africa Europe | Asia
4 Australia South America Africa North America | Asia | Europe
5 Australia South America Africa North America | Europe | Asia
6 Australia South America Africa North America | Europe | Asia

Figure 11: Priorities on countries for distribution [11]

10

REINFORCEMENT LEARNING IN THE GAME OF RISK

B.2 Methods

B.2.1 DEEP Q-LEARNING ALGORITHM

Algorithm 1 Deep Q-Learning Algorithm

Require: 7 < e-greedy(Qy), n (batch-size), lag (copy weights interval)
1<=0
while 7 not converged do
A, Riy1, Spp1 ~ m(Sh)
Append (S, A¢, Rey1, Si4+1) to D
for i =0,....,m—1do
(S4, Ag, R4, Sh) ~ D
target <= Rg+ ymaxy Q- (S, a’)
err <= target — Qu(Sq, Ag; w)
VuwL(w) < (errV,Q(Sq, Ag, w)
w <= w — aVyL(w)
end for
if ¢ mod lag = 0 then
wo=w
end if
1<=1+1
end while

B.3 Experiment Data

1121314567 |8]9]|10
2111|141 {1]0]0]|0|O
311(1(1]1{0|0]010|0|O0
411{1(1]0{0|0]010|0|O0
5(170]0]0]0|0]0]|0]|0] O
6 10({0]010]0|0O|0O]0O|0] O
7107/0]0]0]0|0]0]|0]|0] O
8 10(0j010]0|0O|0O]0O|0] O
910(0{010]0|0|0O]0O|0] O
10/0(0{0|0O]0|0O[0O]0O|0] O

Figure 12: Data for decision surface at game 0, as presented at 7

11

REINFORCEMENT LEARNING IN RISK

10

0
0
0
0

01010

1

0070|010

1

1

0070|010]0]O0

1

2(3|14|5/6|7|18|9
0/]0j0{0|0O]0]|0O|O0

1

1
1
1

2

10

Figure 13: Data for decision surface at game 10000, as presented at 8

12

REINFORCEMENT LEARNING IN THE GAME OF RISK

Game Loss
25 1.373675118
50 1.142622606
75 0.859688564
100 | 0.799261594
125 | 0.746382538
150 0.72024093
175 | 0.663491657
200 | 0.683843653
225 | 0.671489613
250 | 0.650646243
275 | 0.648120404
300 0.64036958
325 | 0.643992871
350 | 0.632119079
375 0.63804814
400 | 0.630119071
425 | 0.639257048
450 | 0.636795815
475 | 0.645470185
500 | 0.637449925
525 | 0.652163947
550 | 0.647730151
575 | 0.639209795
600 | 0.643148434
625 0.64384299
650 | 0.645585634
675 | 0.649491162
700 | 0.650643593
725 | 0.649308528
750 | 0.646770803
775 | 0.646518211
800 | 0.648671937
825 0.64778524
850 | 0.647318807
875 | 0.649503873
900 | 0.650567805
925 | 0.653255578
950 | 0.654029195
975 | 0.655243877
1000 | 0.655459844

Figure 14: Data for loss of the DQN

13

REINFORCEMENT LEARNING IN RISK

Bot wins 1 2 3 4 5
Simple DQN | 8791 | 8695 5789
Random 1209 7284 | 1455
TD 1305 | 2716
DQN 8545 | 4211

Figure 15: Data for the bot comparison

Appendix C. TD Normalization

08 \

0,6
04
0,2

0

123456 78 91011121314151617 181920 21 22 23 24 25 26 27 28 29 30 31 32
-0,2
0,4
territor 1t eshold
= armiesfeatureweight nemyreinforcementfeatureweight
Figure 16: Normalized Feature Weights, no divergence
40
: d—
12 3 456 7 8 910 13 14 15 16|17 18 19 20 2

-20

-40

-60

-80

-100

territoryfeatureweight = hinterlandfeatureweight
—hestenemyfeatureweight = armiesfeatureweight

e cnemyreinforcementfeatureweight

Figure 17: Non-normalized Feature Weights, massive divergence after indistinct amount of turns

14

	Introduction
	Graphical User Interface
	Methods
	Features
	Heuristic Algorithms
	Temporal Difference Learning
	Finding the future state value
	Deciding to attack
	Normalization

	Deep Reinforcement Learning
	Deep Q-Network
	Deep Q-Learning

	Experiments
	Abstractions
	Setup Experiment
	Alpha
	Lambda
	Win-Chance Threshold
	Random-Chance Threshold

	Deep-Q Learning Approach
	Self-play Training Procedure
	Simple Attack Policy
	Winning Player in Self-play

	Comparison of the methods

	Discussion

	Conclusion

	GUI Details
	In-Game Features
	SVG

	Tabular information
	Distribution Priorities
	Methods
	Deep Q-Learning Algorithm

	Experiment Data

	TD Normalization

