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Abstract—This thesis explores an approach to solving the
online multi-hoist scheduling problem by combining graph neural
networks and multi-agent reinforcement learning. It approaches
the problem by creating two sets of agents: source agents and
hoists. When requested, a source agent selects a job from
a queue of jobs in a source station to give to hoists. The
hoists are responsible for picking up and dropping off jobs at
stations, and coordinate with each other to avoid scenarios that
would result in a deadlock. The devised algorithms are trained
and benchmarked against other approaches, such as random
and heuristic algorithms. Further insights into the methods
are obtained from an analysis using dimensionality reduction
on neural activations of the environment states. The results
indicate that deadlocks are avoided in all experimental results.
Furthermore, the approach in this thesis outperforms the other
approaches in the benchmark by 7.50% to 10%. By analyzing
the neural activations, it is shown that the hoist agents estimate
that situations with many jobs being processed yield a higher job
throughput than situations with less. Further research into the
overall approach is recommended, but the results show potential
to perform well against other approaches in existing literature.

Index Terms—Online multi-hoist scheduling, graph neural net-
work, reinforcement learning, multi-agent coordination, deadlock
avoidance

I. INTRODUCTION

Scheduling is an important problem setting for both
academia and industry. Firstly, scheduling problems are trans-
formed to benchmarks for research in NP-hard combinato-
rial optimization problems [1]. Some examples include the
job-shop scheduling problem [2], the production scheduling
problem [3], and the automatic guided vehicle problem [4].
Many of these problems are widely applicable to industrial
settings, since many assignment problems can be formulated as
scheduling problems [5]. Consequently, the algorithms devised
from research contribute to optimizing countless industrial
processes, due to similarities between specific scheduling
problems.

In this thesis, we explore methods for a specific scheduling
problem: the online multi-hoist scheduling problem (OMHSP);
otherwise known as the dynamic multi-hoist scheduling prob-
lem [6]. For this problem, objects, which are placed on
a rack, are moved to stations by overhead hoists. Within
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these stations, the parts receive (electro)chemical treatment.
The objects follow pre-defined orders to visit stations. After
visiting all stations in their order, the process for those objects
is finished. The problem is online, since the scheduler receives
jobs that arrive over time [7]. The scheduler schedules these
jobs without knowledge about the future. In section IV, the
problem is more formally introduced.

The field of mathematical optimization is concerned with
the selection of a best solution, with regard to some objective,
from some set of feasible solutions [8]. Most commonly,
scheduling problems such as the multi-hoist scheduling prob-
lem (MHSP) are modelled and solved using techniques from
mathematical optimization, an example being mixed-integer
linear programming for modelling of the MHSP [9].

Common algorithms such as branch-and-bound techniques
can solve these mathematical models to optimality [10] [11],
but suffer from the curse of dimensionality [12]. The curse
of dimensionality often prevents these algorithms from be-
ing applicable in real-world scenarios [13]. To devise more
practically applicable algorithms, research in approximation
algorithms increased. Instead of targeting an optimum solution
of the problem, approximation algorithms aim to find an
approximation to the optimum solution in at most polynomial
time. Some examples of approaches are neighbourhood search
[14], heuristics [15], and genetic algorithms [16]; the latter
being limited to only single-hoist problems.

The approximation algorithms above mostly start with an
initial job queue, but do not adapt well to online situations, as
they need to re-solve from scratch every time a new job arrives
[17]. The lack of adaptation is problematic for the OMHSP,
since the configurations constantly change with new jobs
coming in at a predefined rate. By formulating the OMHSP as
a sequential decision-making problem, new jobs arriving over
time does not impose an issue for the algorithm, since the state
representation can be updated at every time step. An example
of such a formulation is the Markov Decision Process (MDP).

In this thesis, we formulate the OMHSP as a Markov
Decision Process, so it can be approached by using the rein-
forcement learning framework. This formulation is desirable,
since the framework can optimize sequential decision-making
problems by maximizing some reward signal. The goal of
the research presented in this thesis is to maximize the job
throughput for the online multi-hoist scheduling problem.

By utilizing techniques from reinforcement learning and



graph representational learning, this problem is approached.
Several research questions have been formulated to con-

tribute to discussing results surrounding the problem statement
of this thesis. For the following paragraphs, ”the approach”
defines the approach that this thesis takes to solve the OMHSP.

Since deadlocks cause the entire process to halt, making the
system unable to continue working on tasks, it is important to
address the potential deadlocks, as also discussed in [18] [19].
One question to ask is “How can the approach be devised, such
that deadlocks are guaranteed to be avoided?”.

Due to the optimization context of the problem statement in
literature [20] and this thesis, it is key to ask “How does the
approach perform against the OMHSP?”. Performance will be
measured as the job throughput for multiple simulations of
the OMHSP. Since it is infeasible for this thesis to assess
the performance of the approach directly on the real setup of
the problem, a simulation is created as an alternative tool of
assessment. The hypothesis is that a higher throughput in the
simulation will yield a better performance against the real-
world problem.

Considering that multiple approaches to the OMHSP exist,
it becomes necessary to benchmark different algorithms in
order to compare them in terms of performance, which is
measured in job throughput. The question becomes “How does
the approach taken in this thesis perform on the OMHSP,
as opposed to other methodologies in literature?”. However,
since there is no fixed benchmark for the OMHSP, it becomes
difficult to perform this comparison. For that reason, the
approach in this thesis is compared with other methods that are
implemented for the purpose of comparison. Two examples are
random and greedy heuristic algorithms, and their performance
is also measured within the simulation.

Since the approach that this thesis is taking employs several
black-box algorithms such as neural networks, it is difficult
to explain how the system makes its decisions [21]. As poor
decision-making can have significant negative impact on the
throughput in the OMHSP, and thus a loss of resources in
the industry, another question becomes “What insights can be
observed from the approach?”. Insights can be derived from
information into the decision-making of the approach.

This thesis is organised as follows. Section II explains the
contributions from this thesis in terms of current state-of-
the-art. Section III describes background knowledge for the
methodology. In section IV, the problem is presented. An
explanation of the devised methods is given in section V.
Experiments on the performance of these methods with respect
to the research questions are found in VI. The experimental
results are presented in section VII. Finally, the discussions
and conclusions are drawn in section VIII and IX.

II. RELATED WORK

Previously, multi-agent reinforcement learning has been
used with GNNs to approach the OMHSP [22]. However,
the problem definition in that paper restricts the situation to
a rail system where the overhead hoists can overtake each
other. In this situation, deadlocks do not arise, which is a large

problem in the one-way rail systems that are investigated in
this thesis. Furthermore, regarding the methodology of that
paper, the graph representation is distinct from the one used
in this thesis.

The previous paper appears to be the only approach to
the OMHSP using reinforcement learning and graph neural
networks. More popular in literature are branch-and-bound
approaches, which can also be used on a setup with a single
rail [9]. In order to avoid deadlocks, a set of disjunctive
inequalities is constructed. This thesis extends those rules to
facilitate more efficient hoist movements, by utilizing a priority
list of hoist behaviours.

There exist many papers using mathematical models of the
MHSP [23] [24] [25], which all employ heuristics to speed
up the search to an optimal solution within the mathematical
model. This thesis makes use of a simulation with learning
algorithms to prevent spending much time on search. Although
this gives up the optimality guarantee, it benefits algorithmic
runtime. Moreover, it allows the problem to be online, which
mathematical models do not support.

III. BACKGROUND

Reinforcement learning (RL) is the problem faced by an
agent that must learn behavior through trial-and-error in-
teractions with a dynamic environment [26]. Fully observ-
able reinforcement learning environments can be formulated
as a Markov Decision Process. Formally, this is a 5-tuple
(S,A,R, P, γ) [27], where R : S×A→ R, P : S×A×S →
[0, 1], and γ ∈ R. Here, S and A are the state and action
space of the agent, R is the reward function, P is the transition
probability function and γ is the discount factor.

An RL agent is situated in a particular state s ∈ S, where
it has to take an action a ∈ A. Action selection is done using
the policy π(at|st) ∈ [0, 1], which denotes the probability of
taking action at given that the agent is in state st.

After taking action a in state s, the agent observes reward
Ras and ends up in state s′ with probability P as,s′ . This form of
sequential decision-making is repeated until the agent reaches
a terminal state, after which the episode ends. There also exist
non-episodic problems, where there are no terminal states.

The return Gt =
∑∞
i=t γ

i−tRi is a discounted cumulative
sum of rewards Ri. γ ensures that rewards observed later count
exponentially less in the computation of the return from time
step t. State value vπ(st) = E[Gt|S = st] is the expected
return when in state st under policy π. Qπ(st, at) = E[Gt|S =
st, A = at] is the expected return Gt when in state st and
taking action at under policy π [28].

There are multiple approaches to reinforcement learning, but
this thesis makes use of Policy Gradient methods [29], which
are actor-critic algorithms. These methods use explicit policy-
and value function estimator networks to make decisions.

Policy gradient methods compute an estimate of the gradient
of the policy function, which is optimized with gradient ascent.
One commonly used estimator is

LPG(θ) = Êt[∇θ log πθ(at|st)Ât] (1)



The policy is approximated by a function with parameters
θ. Ât is an estimator of the advantage at time t. Furthermore,
Êt[. . . ] is an estimate of the expectation, estimated by mini-
batch samples of experience.

However, empirically, performing multiple steps of opti-
mization on this loss LPG using the same trajectory often leads
to destructively large policy updates [30]. In order to prevent
these large policy updates, Trust Region Policy Optimization
(TRPO) [31] was introduced. In this method, a constraint on
the size of the policy update is imposed.

r(θ) =
πθ(at|st)
πθold(at|st)

max
θ

Êt
[
r(θ)Ât

]
s.t. Êt [KL [πθold(.|st), πθ(.|st)]] ≤ δ

(2)

Here, θold are the parameters of the policy before the update.
The constraint of KL-divergence [32] between the two policies
prevents too large updates of the policy, since it may at most
be δ ∈ R.

The problem TRPO aims to solve can also be framed as

max
θ

Êt
[
πθ(at|st)
πθold(at|st)

Ât − βKL [πθold(.|st), πθ(.|st)]
]

(3)

for some hyperparameter β, but selecting the value has been
shown to be difficult [30].

IV. ONLINE MULTI-HOIST SCHEDULING PROBLEM

A. Definition

The multi-hoist scheduling problem is an instance of a
group of scheduling problems with a continuous temporal
component. There exist multiple types of MHSPs [20], but
this thesis limits itself to one definition of the OMHSP. The
devised methods are tested on this specific definition, but are
extendible to a wider range of problems, for example to online
multi-hoist scheduling problems with multiple rails of hoists.

Fig. 1. Example setup of the online multi-hoist scheduling problem

In Figure 1, a setup with two hoists and four stations is
depicted. The leftmost station is both a source and sink, where
new jobs arrive, and completed jobs are discarded. Each job
contains a tuple of tasks (ssource, · · · , ssink), indicating in

which order the jobs need to go through the stations to be
completed.

The goal of the OMHSP is to maximize the throughput of
jobs in the line, which is defined as the number of completed
jobs per second, with respect to the following conditions:

• Hoists share a single track and must not collide
• Transport time cannot be neglected
• Hoists can only move in their defined range.
• No storage between two stations is allowed.
• Hoists and inner stations can contain up to one job.

The definition above is supported by [20].

B. Simulation

In order to allow agents to learn a policy, a simulation of the
problem is created. The simulation progresses with a constant
interval ∆t at every iteration.

A list of name references of objects, constants, and variables
in the simulation are provided in appendix A. The environment
is modelled as a stochastic process, where jobs arrive accord-
ing to a Poisson Process [33] with a constant arrival rate λjob.
There is also a possibility to start the simulation with multiple
jobs already in the queue, since many industrial applications
prefer a backlog of jobs that are ready for processing.

Jobs are initialized with a task configuration
(ssource, · · · , ssink), that needs to be completed in-order.
Once all tasks have been completed, the job is finished by
putting it into a sink station. The treatment time of each task
is dependent on the station of the task, and when jobs are
lifted from a station after being processed, they need to drip
for a certain duration.

Hoists move according to a first-order displacement model,
where the position dhoistit+1 = dhoistit ±vhoistiavg ·∆t. Here, vhoistiavg

is a constant velocity. When a hoist has reached its target
position, a constant thoistibreak is accumulated to the action time
to simulate breaking time. Identical behaviour exists for lifting
and lowering time of the hoists. Finally, the simulation detects
collisions, and prevents them from occurring by terminating
the movement of the colliding hoist(s).

V. METHODOLOGIES

This section discusses the methods that have been developed
to maximize the job throughput for the OMHSP. Two sets of
agents make up the optimization pipeline: one set of agents
are the hoists, which learn to control the movement within
their ranges to pick-up and drop-off jobs between stations.

The source station can contain multiple jobs at a time.
An additional agent is introduced to select the specific job
from this station when a hoist requests it. Thus, this agent
is responsible for selecting the jobs from the sources, which
simplifies the action space of the other set of agents.

A. Job allocation from sources

Whenever a hoist requests a job from a source s, the job
allocation agent returns a job for the requesting hoist.



The approach used for the source job allocation is an
adapted version of policy learning with representational learn-
ing for job-shop problems [34]. The problem is translated to
a graph representation, and reinforcement learning is applied
to maximize the throughput when selecting jobs from a sink.
For OMHSPs, the graph representation of the problem does
not correspond to the one used for job-shop problems.

1) Problem formulation: To form the RL problem, the 5-
tuple (S,A,R, P, γ) is defined.

The state space is composed of all possible permutations
of the environment variables and constants. One permutation
then represents information such as the allocation of jobs to
stations, how much processing time is left for each job, and
numerous other aspects of the simulation variables, constants,
and objects. Figure 1 is a good indication of an example state.

The job selector agent uses an approximated representation
of the state. For each job j, an embedding vector hj is
constructed, consisting of the following elements:

• A one-hot encoding of the operation status. [1, 0, 0],
[0, 1, 0], and [0, 0, 1] mean processing the job has not
started, the job is being processed at a station, and the
job is finished with processing respectively.

• The remaining processing time of the current task
• The proportion of tasks that have been completed
• The number of tasks remaining, including the current

station task
• The processing time of the next task
• The accumulated time of all remaining task times

Each job serves as a node in a graph, with its feature vector
being the node embedding. When a new job arrives at the
source, the size of the graph increases. Between nodes, three
types of edges are created:

• Precedent edges
Exists from node i to j when the next task of the job
corresponding to node i takes place in the station that is
currently occupied by the job corresponding to node j.

• Succeeding edges
Exists from node j to i when the next task of the job
corresponding to node i takes place in the station that is
currently occupied by the job corresponding to node j.

• Disjunctive edges
Exists from node i to j and from node j to i when the
next tasks of the jobs corresponding to node i and j take
place in the same station.

This graph, denoted by G = (V,H = (hj , · · · ), E =
Epre ∪ Esuc ∪ Edis) is the approximation of the state space
S of the agent. The node embedding in List V-A1 contains
summarizing information regarding the future, since the edges
in the graph only look at the next task in the tasks order, while
there could be more tasks that still have to be completed. By
summarizing this information, the agent has information about
both the current situation and the future.

Fig. 2. Example of a graph structure for a problem configuration

The action space A is defined as the set of jobs that are
currently inside of source station s, since the agent should
choose one of these to dispense to a hoist. The action space
changes at every iteration, since new actions might become
available due to incoming jobs.

Figure 2 shows a visual representation of the graph that
is constructed from a specific setup of jobs and task orders.
However, the state representation is still just one graph with
three different types of edges. Since job 1 will go to station
2, which is occupied by job 2, an edge is added from job 1
to job 2 in the precedent graph. A reverse edge is added in
the succeeding graph. The addition of this edge is done for all
preceding and succeeding constraints. Furthermore, since job 1
and job 4 are going to the same station after their current task,
an undirected edge is added between both in the disjunctive
graph. Each node has its corresponding embedding vector hj
associated to it. The green-coloured nodes are valid actions,
since their jobs belong to the source station that the agent is
selecting jobs from.

Since the goal is to maximize throughput, a reward signal of
1 is given whenever a job is completed successfully. However,
at every iteration where no hoists request a job from s, the
action space remains empty. Consequently, these would cause
trivial state transitions, which contribute to the difficulty of
the credit assignment problem [35]. To counteract the credit
assignment problem, transitions are formulated in the form of a
semi-MDP [36], which is still solvable with the RL framework.

In a semi-MDP, state transitions are only performed when
actions can be selected by the agent. If a state transition occurs
at time t and t + n, the reward given to the transition in
the semi-MDP equals

∑t+n
i=t γ

i−tri. Other transitions, such
as simple progressions of the simulation timer without there
being any possible action, are aggregated within one transition
of the semi-MDP.

2) Agent structure: Recently, research in graph neural net-
works (GNNs) has been receiving attention because of the ex-
pressiveness of graphs. Due to their convincing performance,
GNNs have become a widely applied graph analysis method
[37]. Many NP-hard problems are formulated as sequential
decision-making problems on graphs, which yields the com-
bination of reinforcement- and graph representational learning.
Examples such as routing optimization [38] or computer chip
design [39] show promise in these techniques.



In this thesis, we utilize a framework called message-
passing graph neural networks (MPNN) [40] to exploit the
information from the state graphs G = G(0). These graph
neural networks iteratively propagate information through an
embedding graph. h(k)

j represents the embedding vector as-
sociated to node j. At k = 0, h(0)

j represents the initial
embedding vector as defined in List V-A1.

h
(k)
j = fn

(
ReLU

fpre
 ∑
i∈Npre(vj)

h
(k−1)
i ; θ0

∥∥∥∥
ReLU

fsuc
 ∑
i∈Nsuc(vj)

h
(k−1)
i ; θ1

∥∥∥∥
ReLU

fdis
 ∑
i∈Ndis(vj)

h
(k−1)
i ; θ2

∥∥∥∥
ReLU

(∑
i∈V

h
(k−1)
i

)∥∥∥∥h(k−1)
j

∥∥∥∥h(0)
j ; θ3

)
(4)

The computational process of this message-passing GNN
is shown in Equation (4). The symbol ‖ represents a vec-
tor concatenation operator, and ReLU(x) = max(0, x).
The node embedding of node i at iteration k is the re-
sult of a multi-layered perceptron f (k)

n (.; θ0), computed from
a vector concatenation of multi-layer perceptron outputs
f

(k)
pre(.; θ1), f

(k)
suc(.; θ2), f

(k)
dis (.; θ3), and the other feature vectors

in the equation.
After k iterations of message passing, the embedding graph

G(k) = (V,H = (h
(k)
j , · · · ), E) is obtained. At every iteration,

the messages only reach the direct neighbours. Hence, multiple
iterations are necessary to propagate information through a
large part of the graph.

After calculating G(k), the policy and value of the graph
embedding are computable.

π(ait|G(k)) =
exp(fp(h

(k)
i ; θ4))∑

j∈At
exp(fp(h

(k)
j ; θ4))

(5)

Equation (5) shows the policy, which uses a softmax
operation over all allowed actions (At) at time step t. For
optimization of the policy, PPO [30] is employed. TRPO, as
seen in Section III, requires solving a constrained optimization
to update the parameters, which is computationally demand-
ing. PPO simplifies this concept by using a clipped surrogate
objective. Furthermore, in practice, PPO is more stable than
TRPO and algorithms such as DQN [41]. Since PPO uses a
critic, the state value is estimated as:

V π(G(k)) ≈ V (G(k); θ5) = fv(
∑
i∈V

h
(k)
i ; θ5) (6)

Given parameters set Θ = {θ0, · · · , θ5}, PPO aims to
maximize Ltotalt (Θ):

LCLPt (Θ) =Êt
[
min(rt(Θ)Ât, clip(rt(Θ), 1− ε, 1 + ε)Ât)

]
LCRITt (Θ) =Êt

[(
V (G

(k)
t ; θ5)− V targett

)2
]

LENTt (Θ) =E [log(πΘ)]

Ltotalt (Θ) =Êt
[
LCLPt (Θ)− αLCRITt (Θ) + βLENTt (Θ)

]
Here, min(x, y) returns the minimum value between x

and y. The function clip(x, a, b) clips the variable x to be
within the range [a, b]. When x < a, clip(x, a, b) = a,
and when x > b, clip(x, a, b) = b. The value estimator
V targett =

∑T
i=tRi is the realised sum of rewards. Finally,

α and β are hyperparameters controlling the influence of each
individual loss function on the total loss.

This loss function combines the actor loss LCLPt (Θ), critic
loss LCRITt (Θ), and an entropy term LENTt (Θ). The entropy
term has been added since the actor and critic share the layers
from the GNN.

B. Multi-hoist behaviour learning

The second set of agents are created to optimize hoist
movement on the rail. Since hoists cannot overtake each other
in the one-rail setup, and have pre-defined ranges, there is a
high likelihood for deadlocks to occur. These are situations
where the process is not able to progress further.

Fig. 3. Example of a deadlock situation

Figure 3 shows an example of a deadlock. Here, both hoists
are carrying a job and want to bring it to a loaded station. Since
there is no hoist to take job 1 out of the station, the process is
stuck. Without multi-agent coordination, these deadlocks can
occur from numerous behaviours.

When training a reinforcement learning agent without any
guidance, the policy might end up causing deadlock situations.
In order to ensure deadlock prevention, learning is done
together with pre-defined behaviours and agent coordination,
ensuring the decisions of agents cannot result in deadlocks.

When taking an action, a hoist selects a station that currently
holds a job. Upon making this decision, a 4-stage process is
started, which consists of the following stages:

S1. Going to the selected station
S2. Picking up the job from the selected station



S3. Moving the picked-up job to its next task’s station
S4. Dropping off the picked-up job in its next task’s station
This way, the agent only learns to select the right stations

to maximize throughput, and does not control the movement
of the hoist. By controlling these movements, deadlocks that
would be caused by hoists running into each other are pre-
vented.

1) Agent coordination: Since agents are placed on a one-
rail line, there should be a certain order of movement priorities
at which the agents behave. These priorities prevent them from
running into a movement deadlock when going towards each
other.

The priority queue below has been devised for the purpose
of avoiding movement deadlocks.

Action stage (higher position in table is higher
priority)
S2 and S4
S3, given that the targeted station is empty. Tie-
breakers are resolved by choosing the hoist closest
to the target station
S1. Tie-breakers are resolved by selecting the job
with the least remaining time
(Resting)

Since an agent cannot stop when loading or unloading a
job, these have highest priority. Then, since carrying a job
for longer is worse than leaving a job in for treatment, S3 is
given priority over stage S2, given that it can be unloaded in
its target station at that time. Finally, resting agents have the
lowest priority.

When agents collide, the priority queue decides on the
behaviour of the collided agents. In this scenario, all agents
participating in the collision will follow the behaviour of the
highest-priority agent. For example, when the highest-priority
agent is in S2, the other agents will wait for this agent to
finish.

This procedure prevents deadlocks that would occur from
hoists running into each other, but the process can still run into
deadlocks such as the one shown in Figure 3. These are caused
by permitting hoists to take actions that will result in getting
stuck. The agents should coordinate their action selection to
avoid these. Action pruning is used to prevent these situations
from happening. Initially, the action space A of each hoist
consists of all existing stations. Then, the following pruning
rules are applied to this set:
• A = ∅ for non-resting hoists
• A← A \ {a|a is an empty station}
• A← A \ {a|a is an out-of-range station}
• A← A \ {a|a contains a job to an out-of-range station}
• A← A \ {a|a is targeted by another hoist}
• A← A \ {a|a contains a job to a station being targeted

by another hoist}
Besides this initial pruning, the action lists of other agents

are pruned again once another agent has made the decision to

take an arbitrary action ah. This pruning procedure consists
of the following rules:

• A← A \ {ah}
• A← A\{a|a will result in a deadlock with ah being taken}
Whether taking an action will result in a deadlock is

determined by the size of a maximum-size matching. Figure
4 shows two possible situations where matching is required.
Here, the next station is occupied for each job that would
be selected. If any of these station are selected, the matching
algorithm will attempt matching other hoists to the other jobs
in the chain. This matching is done by finding a maximum
matching with the same size as the number of stations in the
chain. The Hopcroft–Karp algorithm [42] is used to find this
bi-partite matching, as it runs in polynomial time. This will
naturally prevent these deadlocks from occurring, as actions
are only taken if it is completely certain to be possible. If no
matching is possible, the action cannot be taken.

Fig. 4. Examples of station chains that require forced actions

Together with the prevention of deadlocks due to hoist
movement, the deadlock prevention mechanism described in
this subsection has been proved to be sufficient and necessary
conditions for deadlock prevention [9].

2) Agent policy learning: The approach of learning to
select which station to target is similar to the approach used
for job allocation from sources, which is discussed in Section
V-A. As with the job allocation problem, PPO is employed
together with a GNN in the exact same way to form policy
π for each agent. The difference between the methods comes
down to the graph structure used to represent the problem.

Fig. 5. Example of problem configuration for station selection

The dashed line in Figure 5 represents that the carried job
by the left hoist used to be located in station 2. From the
example configuration in the figure, the graph representation
for the right hoist is created below.



Fig. 6. Graph representation of example problem

There are two graphs: processing and carried graphs. This
way, the GNN is able to separate jobs that are currently being
carried by a hoist, and jobs that are in a station. The node
feature vectors hj are identical to the ones in List V-A1.
The green nodes are valid actions after pruning, and station 2
cannot be selected as it is currently empty. The complete node
embedding is shown in the equation below.

h
(k)
j = fn

(
ReLU

fproc
 ∑
i∈Nproc(vj)

h
(k−1)
i ; θ0

∥∥∥∥
ReLU

fcar
 ∑
i∈Ncar(vj)

h
(k−1)
i ; θ1

∥∥∥∥
ReLU

(∑
i∈V

h
(k−1)
i

)∥∥∥∥h(k−1)
j

∥∥∥∥h(0)
j ; θ3

)
(7)

Optimization of the policy and value function estimates
happens identically to section V-A, with a positive reward of
1 being awarded whenever a job is completed.

VI. EXPERIMENT SETUP

The entire project is implemented in the Python program-
ming language with a graphical user interface written using the
Pygame library. All experiments are performed on a Windows
10 device with an Intel Core i7-10750H CPU and an NVIDIA
Quadro P620 GPU. There was no use of any GPU acceleration.

Firstly, deadlock avoidance is investigated by running the
coordination algorithm with a heuristic hoist agent and GNN
job selector agent on 45 unique configurations for a time of
7, 200 seconds within each simulation. These configurations
vary from containing two treatment stations and two hoists, to
ten treatment stations with ten hoists. The order of tasks that
jobs needs to complete are at most 100 random permutations
of the set of stations.

Whether a configuration ends up in a deadlock is measured
by the time difference between the last time step that any
agent had the opportunity to take an action, and the final time
of the simulation. When this number is large, one expects the
configuration to be in a deadlock, while small values indicate
that agents are still able to take actions, and are not in a
deadlock scenario. Both the source job allocation agents and
the hoist agents employ the Adam optimizer [44] to optimize
their respective objective functions. The exact configuration
files and raw data from the experiments can be found back in
appendix A.

Secondly, the GNN hoist agent is trained on 200 simulations
of 1, 200 seconds on a configuration of two hoists and five
stations, with ten possible tasks orders, and its progression and
training performance are analysed using plots of the loss func-
tions and accumulated rewards. All specific hyperparameters
used for the training of the algorithms, and the environment
configurations, can be found back in appendix A.

In addition, 2-dimensional t-SNE [43] dimensionality re-
duction is performed on 100, 000 produced graph embed-
ding

∑
i∈V h

(k)
i of the final model. Paired together with the

corresponding state-value estimates V (G(k); θ5), applying t-
SNE aims to contribute to the explainability of the graph
embeddings that are produced by the network. The scatterplot
created by the two components of the t-SNE embedding will
have 100, 000 data points with their associated state value
estimates. If there are any patterns with similar colours in the
plot, it means that t-SNE detected that those clusters of points
are similar in some way. Then associating those data points to
their original graph G(0) could reveal some properties about
the clusters.

Finally, the methods presented in this thesis are compared
to several other approaches, such as random and heuristic
algorithms, in terms of their accumulated reward over different
configurations, which are simulated for 3, 600 seconds each.
Boxplots, histograms, and appropriate statistical tests are used
to determine whether a significance difference in performance
is present. Both heuristic agents chooses their target based on
greedily selecting job with the lowest remaining processing
time. The random agent chooses a random job to distribute in
the case of the job selectors. The random hoist agent selects
a random station to target.

VII. RESULTS

A. Deadlock avoidance

Summary statistics Time difference (seconds)
Count 45
Mean 0.695556

Standard deviation 1.908945
Minimum value 0.0

First quantile 0.0
Median 0.0

Third quantile 0.0
Maximum Value 10.1

Fig. 7. Summary statistics of the time differences of the deadlock experiment
configuration files

The table above shows that for the 45 configurations, the
largest difference in time between the end of the simulation
and last possibility for any agent to take an action is 10.1
seconds. Since each simulation is executed for 7, 200 seconds,
10.1 seconds is about 0.14% of the entire simulation time. For
all other utilized configuration, this proportion is lower.



B. Training progression of the hoist agent

Fig. 8. Undiscounted return during hoist agent training

The figure above visualizes the progression of the cumula-
tive reward over the training period of the hoist agent. At the
start of training, the return fluctuates between 11 and 12. The
agent consistently obtains a return of 12 after 29 episodes.

Fig. 9. Clip loss during hoist agent training

The clip loss, which should be maximized, starts out with a
value of −4.49. After 113 episodes, the clip loss consistently
obtains a value of around −3.893.

Fig. 10. Critic loss during hoist agent training

The loss function of the critic starts off with a value of 55.6.
After 8 episodes, it has decreased to 25.5. After 29 episodes,
the loss consistently obtains a value of around 15.64, with an
outlier at episode 112 obtaining 12.7.

C. Performance benchmark

Fig. 11. Boxplots and histograms of the number of completed jobs on OMHSP
configurations for different job selector algorithms

In Figure 11, three approaches for the job selector agent
are compared. The boxplots, which are overlaid above the
histograms, summarize the distribution of these three agents.
The histogram shows the actual distribution of the return. From
the boxplots, it can be seen that the three distributions look
approximately normally distributed.

In order to compare the methods, a one-sided paired
Wilcoxon signed-rank test [45] is performed between all
pairs of agents. This is a non-parametric test, meaning it
does not assume normality of distributions. Let X,Y, Z be
random variables sampled from the distributions of the GNN,
greedy, and random job selector agent respectively, and let the
significance level to α = 0.01.
• H0 : median(X − Y ) = 0, Ha : median(X − Y ) > 0

After performing the test, we obtain ρ = 0.66 with test
statistic 220, 110..0. Since ρ > α, we cannot reject H0.

• H0 : median(X − Z) = 0, Ha : median(X − Y ) > 0
After performing the test, we obtain ρ = 0.53 with test
statistic 227, 059.5. Since ρ > α, we cannot reject H0.

• H0 : median(Y − Z) = 0, Ha : median(X − Y ) > 0
After performing the test, we obtain ρ = 0.61 with test
statistic 228, 737.5. Since ρ > α, we cannot reject H0.

Fig. 12. Boxplots and histograms of the number of completed jobs on OMHSP
configurations for different hoist algorithms

In Figure 12, three approaches for hoist agents are com-
pared. The histograms and boxplots show the distribution of



the return. From the histograms, it can be seen that not all the
three distributions are normally distributed.

Thus, the methods are again compared using the one-sided
paired Wilcoxon signed-rank test. Let X,Y, Z be random
variables sampled from the distributions of the GNN, greedy,
and random hoist agent respectively, and let the significance
level to α = 0.01.
• H0 : median(X − Y ) = 0, Ha : median(X − Y ) > 0

After performing the test, we obtain ρ = 2.0 ·10−18 with
test statistic 81, 722.5. Since ρ < α, we reject H0.

• H0 : median(X − Z) = 0, Ha : median(X − Y ) > 0
After performing the test, we obtain ρ = 4.8 ·10−21 with
test statistic 84, 165.5. Since ρ < α, we reject H0.

• H0 : median(Y − Z) = 0, Ha : median(X − Y ) > 0
After performing the test, we obtain ρ = 1.6 ·10−39 with
test statistic 94, 840.0. Since ρ < α, we reject H0.

It is known that median(X) = 43, median(Y ) = 40, and
median(Z) = 39.

D. Explainability of the hoist agent

Fig. 13. 2-dimensional t-SNE embedding of graph embeddings G(k) paired
with estimated state values

Figure 13 shows a scatterplot of the 2-dimensional t-SNE
embedding of 100, 000 graph embeddings G(k). Each data
point is paired with a value from a colour map, representing
the estimated state value that the network produced for that
G(k).

From the figure, it becomes clear that there are three promi-
nent clusters of points in the plot. The state value estimates
of these clusters are around 8, 11, and 12 respectively.

Looking at the initial graphs G(0) for the network, as shown
below the scatterplot in te figure, the green cluster has one edge
between two vertices. In the orange cluster, there is a larger
cover of the vertices. Finally, in the red cluster, all vertices in
the graph are covered by at least one edge between them.

VIII. DISCUSSION

From the experimental results on the deadlock avoidance
experiments, it becomes clear that none of the utilized config-
urations result in a deadlock. The maximum time difference
is 10.1 seconds, which is only 0.14% in the context of a
simulation of 7, 200 seconds. This proportion of time indicates
that the agents are still taking actions near the end of the
simulation, and have not stopped doing so due to deadlock.
Hence, making any deadlock in these configurations very
unlikely.

It is not possible to say if these results mean that deadlocks
are guaranteed to be avoided. However, the configurations
used in the experiment covered a large space of possible
setups, making it more favourable that the method indeed
guarantees to avoid deadlocks. For further research, the use
of techniques from software and systems verification could
provide a mathematical proof of these arguments.

Training the hoist agent uncovered interesting insights into
the problem and the agent. Firstly, Figure 8 shows that the
reward landscape of the problem is quite sparse. Even with
random initialization, the agent’s performance already alter-
nated between scores of 11 and 12. After training for longer,
the agent seems to converge to a consistent performance of 12.
As visible in the loss plots, the agent is unable to optimize
more after obtaining consistent returns of 12.

It is unclear whether 12 is the largest possible throughput, or
the agent has gotten stuck in a local optimum. However, since
some randomness would be expected in the later episodes, the
first possibility seems more likely. It might also be possible
that there are better solutions possible, but that by constraining
the agents to make pre-defined movements, the variability of
the agents gets constrained too much, leaving little room for
improvement. However, a consistent improvement of 1 job per
1, 200 seconds still yields a rate of improvement of around
8.3%.

From the hypothesis testing done on the different job
selector agents, no significance evidence was found against
the hypothesis that the GNN job selector agent does not
yield a median improvement over the other approaches. Since
this is also true for the random job selector, the importance
of selecting between jobs in a source station might not be
significant in most general problem configurations. Yet, it
cannot be ruled out that in some scenarios where certain task
orders follow specific patterns, it is not useful to differentiate
between jobs. Further analysis into specific situations might
provide insights into this statement.

From the hypothesis testing done on the different hoist
agents, significance evidence was found against the hypothesis
that the GNN hoist agent does not yield a median improvement
over the other approaches. Hence, there is clear evidence that
the GNN hoist agent performs better on the testing configura-
tions than the random and greedy heuristic approaches. These
findings that the method proposed in this thesis generally
performs better than the other two approaches. For the GNN
hoist agent versus greedy hoist agent, the improvement is



7.50% per hour, and is a 10.3% increment for the GNN hoist
agent versus the random hoist agent. However, there could still
be certain configurations where the GNN hoist agent does not
perform better; the hypothesis test was performed against the
median performance.

The t-SNE embedding for the hoist agent gives an indication
that the agent estimates the value of a state based on the
number of jobs that are currently actively in the system, and
how occupied the stations and hoists are. Figure 13 seems to
reveal that more occupied situations have a higher estimated
state value, and thus a higher potential for job throughput.
Even so, this high occupancy may not actually hold for every
situation in the cluster. It is merely an estimate of the network’s
beliefs, and those may not reflect the actual situation correctly.
Furthermore, t-SNE is a stochastic dimensionality reduction
algorithm that may produce different results every time. More
model explainability techniques in future research could prove
insightful to the methodologies presented in this thesis.

In terms of state-of-the-art research about the problem, the
results from this thesis are an example that it is possible
to utilize learning algorithms to approach the OMHSP. It is
difficult to say where this work is placed within the literature
in terms of performance, due to the lack of standardized
benchmarks. However, its runtime complexity puts it ahead
of other papers, such as the ones employing approaches from
mathematical optimization.

There are certain decisions that were made in this thesis,
that could be improved in future research. For example, both
the hoist agents and job selector agents are forced to take
an action whenever possible. This makes it impossible for
certain situations to occur, such as one hoist waiting for the
other to complete. As previously mentioned, constraining the
variability of choices an algorithm can make, can limit its
potential.

There are many possible directions of future research. One
interesting direction is hierarchical reinforcement learning
[46], where default behaviours can be used in a hierarchical
manner to control hoist movement and coordination between
agents.

While GNNs generalize well to new situations [39], one
is expected to re-train the agent on a different configuration
of the problem, since it is a completely different markov
decision process. The field of meta reinforcement learning [47]
is concerned with developing agents that learn how to learn in
new situations where conditions are (slightly) tweaked, which
could be applicable to the problem presented in this thesis.

This problem statement also looked into maximizing
throughput, but another interesting problem setting could
include job fairness, where no job should be neglected or
stay in the system indefinitely. One possible approach to this
problem includes a penalty for job queueing times in the
reward function. Finally, it could be worthwhile researching
algorithms that find policies that are guaranteed to avoid
deadlocks, but constrain the problem less than the methods
used in this thesis.

IX. CONCLUSIONS

This thesis has presented a novel approach to the online
multi-hoist scheduling problem by combining graph neural
networks with multi-agent reinforcement learning. In the intro-
duction of the thesis, four research questions were presented,
which are answered.

Due to the significant impact of deadlocks, the question
“How can the approach be devised, such that deadlocks are
guaranteed to be avoided?” was created. By using multi-
agent coordination, deadlocks resulting from hoist behaviour,
such as running into each other, are avoided. Furthermore,
deadlocks stemming from hoist action selection are avoided
by pruning the action space by removing stations that could
result in a deadlock. The experimental results show there are
no deadlocks in many of the configuration. However, it cannot
be proved that this is the case for any configuration. Hence,
it cannot be guaranteed solely by the experiments, but it does
not occur for many practical configurations.

After training, the performance of the approach on the test
configuration of the OMHSP yields a throughput of 12 jobs per
20 minutes; an 8.3% increment over the same approach before
training. The performance varies between configurations, but
the agent scores anywhere between 23 to 43 jobs for all
configurations within the benchmark. The question “How does
the approach perform against the OMHSP?” remains difficult
to answer, but if the hypothesis regarding the simulation and
real-world are correct, the results would be comparable.

To find out how the performance compares to other ap-
proaches, the agent was benchmarked against two other agents.
The approach presented in this thesis scored an 7.5% to 10%
improvement in throughput upon these agents, which was
supported by statistical tests. The question “How does the ap-
proach taken in this thesis perform on the OMHSP, as opposed
to other methodologies in literature?” is unable to be answered
confidently due to there not being a standardized benchmark
for the problem configurations. However, the experimental
results show potential for the method to be investigated in
more detail.

Finally, the question “What insights can be observed from
the approach?” can be answered by using the experimental
results from the explainability analysis. Using the t-SNE
embedding, it was shown that the agent estimates that states
where there are many jobs being treated have the potential for
a high reward yield. Hence, it is more likely that the agent
will attempt filling all stations in order to get a better estimate
of the state value.

In conclusion, further research is necessary to determine
the performance of the approach in this thesis against other
algorithms in the literature. However, from the insights into the
algorithm and performances against different configurations
and other kinds of agents, the approach taken in this thesis
has shown potential to perform well against approaches in
literature. Furthermore, the approach has shown potential
for usage within an industrial setting, especially due to the
deadlock avoidance.
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APPENDIX

SIMULATION OBJECTS, CONSTANTS AND VARIABLES

Objects

Name Description
hi Hoist i, hi ∈ H
ji Job i, ji ∈ J
si Station i, si ∈ S

taski Task i, taski ∈ T

Constants

Name Unit Description
tsim0 [s] Start time of the simulation (bootstraps when > 0)

∆tsim [s] Interval per simulation time-step

dsimmax [m] Maximum position in simulation

λjob [s−1] Job arrival rate, the number of jobs per second

ptasksi Probability of job getting task order configuration i

tci = (taskm, · · · , taskn) Task order configuration i

t
taski
rnd min [s] Minimum random time added to task i

t
taski
rnd max [s] Maximum random time added to task i

tdriprnd min [s] Minimum drip time added to task i

tdriprnd max [s] Maximum drip time added to task i

dstationi [m] Position of station i

typestationi Type of station, in {source, inner, sink}
t
stationi
drip [s] Drip time after job in station i

t
stationi
task [s] Task duration of job in station i

d
hoisti
min [m] Minimum position of hoist i

d
hoisti
max [m] Maximum position of hoist i

d
hoisti
initial [m] Initial position of hoist i

whoisti [m] Width of hoist i

v
hoisti
avg [ms−1] Average velocity of hoist i

t
hoisti
break [s] Break time of hoist i

t
hoisti
lift [s] Lifting time of hoist i

t
hoisti
lower [s] Lowering time of hoist i

Variables

Name Unit Description
task

jobi
cur Current task of job i

t
jobi
cur [s] Current time left for current task of job i

task
j,jobi
t [s] Process duration of task j for job i

task
j,jobi
drip [s] Dripping duration of task j for job i

d
hoisti
cur [m] Current position of hoist i

t
hoisti
action [s] Time left for current action of hoist i

G = (V,E) Graph connecting hoists and stations to jobs



TRAINING HYPERPARAMETERS

GNN Hoist Agent and GNN Job Selector Agent

Hyperparameter name Value
learning rate 0.0025
discount factor 1.0

gae value 0.95
clip value 0.2
critic coef 0.5
entropy coef 0.01
batch size 200
num epochs 5
hid channels 32

num propagations 3

The configurations that were used for training have been stored in JSON-format and attached to the resource files in a
folder called ”res/experiments”. Please refer to this file for more information regarding the configurations that are used. All
configuration files are equipped with a ”seed” variable, which ensures reproducibility of results.

DEADLOCK EXPERIMENT CONFIGURATIONS

The configurations that were used for measuring deadlocks have been stored in JSON-format and attached to the resource
files in a folder called ”res/experiments”. Please refer to this file for more information regarding the configurations that are
used. All configuration files are equipped with a ”seed” variable, which ensures reproducibility of results.


